【題目】已知:在△ABC中,AB=AC=5,M為底邊BC上的任意一點(diǎn),過(guò)點(diǎn)M分別作AB、AC的平行線交AC于P,交AB于Q.
(1)求四邊形AQMP的周長(zhǎng);
(2)M位于BC的什么位置時(shí),四邊形AQMP為菱形?指出點(diǎn)M的位置,并加以證明.
【答案】(1)四邊形AQMP的周長(zhǎng)=10;(2)點(diǎn)M位于BC的中點(diǎn)時(shí),四邊形AQMP是菱形.理由見解析.
【解析】
(1)根據(jù)有兩組對(duì)邊分別平行的四邊形是平行四邊形證明即可;
(1)根據(jù)平行四邊形的性質(zhì)可得到對(duì)應(yīng)角相等對(duì)應(yīng)邊相等,從而不難求得其周長(zhǎng).
(1)∵AB∥MP,QM∥AC,∴四邊形APMQ是平行四邊形,∴AQ=MP,QM=AP.
∵AB=AC,∴∠B=∠C.
∵∠B=∠PMC,∠C=∠QMB,∴∠PMC=∠QMB,∴BQ=QM,PM=PC,∴四邊形AQMP的周長(zhǎng)=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=10.
(2)點(diǎn)M位于BC的中點(diǎn)時(shí),四邊形AQMP是菱形.理由如下:
∵BM=MC,PM∥AB,MQ∥AC,∴AP=PC,AQ=BQ,∴PMAB,MQAC.
∵AB=AC,∴MP=MQ.
∵四邊形AQMP是平行四邊形,∴四邊形AQMP是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:求1+2+22+23+24+…+220的值.
解:設(shè)S=1+2+22+23+24+…+220,將等式兩邊同時(shí)乘以2得:2S=2+22+23+24+25+…+221
將下式減去上式得2S﹣S=221﹣1
即S=221﹣1
即1+2+22+23+24+…+220=221﹣1
請(qǐng)你仿照此法計(jì)算:
(1)1+2+22+23+24+…+22016
(2)1+2+22+23+24+…+2n(其中n為正整數(shù))
(3)1+5+52+53+54+…+5n(其中n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(-1,3),點(diǎn)B(-1,-4),若常數(shù)a使得一次函數(shù)y=ax+1與線段AB有交點(diǎn),且使得關(guān)于x的不等式組無(wú)解,則所有滿足條件的整數(shù)a的個(gè)數(shù)為( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD沿CE向上折疊,使點(diǎn)B落在AD邊上的點(diǎn)F處.若AE=BE,則長(zhǎng)AD與寬AB的比值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,直線y1=﹣x+3與x軸、y軸分別交于A、B兩點(diǎn),直線y2=﹣2x+b經(jīng)過(guò)點(diǎn)A,已知點(diǎn)C(﹣1,0),直線BC與直線y2相交于點(diǎn)D.
(1)請(qǐng)直接寫出:A點(diǎn)坐標(biāo)為 ,直線BC解析式為 ,D點(diǎn)坐標(biāo)為 ;
(2)若線段OA在x軸上移動(dòng),且點(diǎn)O,A移動(dòng)后的對(duì)應(yīng)點(diǎn)為O1、A1,首尾順次連接點(diǎn)O1、A1、D、B構(gòu)成四邊形O1A1DB,當(dāng)四邊形O1A1DB的周長(zhǎng)最小時(shí),y軸上是否存在點(diǎn)M,使|A1M﹣DM|有最大值,若存在,請(qǐng)求出此時(shí)M的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.
(3)如圖3,過(guò)點(diǎn)D作DE∥y軸,與直線AB交于點(diǎn)E,若Q為線段AD上一動(dòng)點(diǎn),將△DEQ沿邊EQ翻折得到直線AB上方的△D′EQ,是否存在點(diǎn)Q使得△D′EQ與△AEQ的重疊部分圖形為直角三角形,若存在,請(qǐng)求出DQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司要將本公司100噸貨物運(yùn)往某地銷售,經(jīng)與運(yùn)輸公司協(xié)商,計(jì)劃租用甲、乙兩種型號(hào)的汽車共6輛,用這6輛汽車次將貨物全部運(yùn)走,其中每輛甲型汽車最多能裝該種貨物16噸,每輛乙型汽車最多能裝該種貨物18噸,已知租用1輛甲型汽車和2輛乙型汽車共需費(fèi)用2600元;租用2輛甲型汽車和1輛乙型汽車共需費(fèi)用2500元,且同一型號(hào)汽車每輛租車費(fèi)用相同.
(1)求租用輛甲型汽車、一輛乙型汽車的費(fèi)用分別是多少元?
(2)若這個(gè)公司計(jì)劃此次租車費(fèi)用不超過(guò)5200元,通過(guò)計(jì)算求出該公司有幾種租車方案?請(qǐng)你設(shè)計(jì)出來(lái),并求出最低的租車費(fèi)用,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE于點(diǎn)G,BG=4,則△EFC的周長(zhǎng)為( )
A. 11 B. 10 C. 9 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解放中學(xué)為了了解學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂(lè)四類電視節(jié)目的喜愛程度,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每人限選1項(xiàng)),現(xiàn)將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所給的信息解答下列問(wèn)題.
(1)喜愛動(dòng)畫的學(xué)生人數(shù)和所占比例分別是多少?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有學(xué)生1000人,依據(jù)以上圖表估計(jì)該校喜歡體育的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電腦經(jīng)銷商計(jì)劃購(gòu)進(jìn)一批電腦機(jī)箱和液晶顯示器,若購(gòu)電腦機(jī)箱10臺(tái)和液液晶顯示器8臺(tái),共需要資金7000元;若購(gòu)進(jìn)電腦機(jī)箱2臺(tái)和液示器5臺(tái),共需要資金4120元.
(1)每臺(tái)電腦機(jī)箱、液晶顯示器的進(jìn)價(jià)各是多少元?
(2)該經(jīng)銷商購(gòu)進(jìn)這兩種商品共50臺(tái),而可用于購(gòu)買這兩種商品的資金不超過(guò)22240元.根據(jù)市場(chǎng)行情,銷售電腦機(jī)箱、液晶顯示器一臺(tái)分別可獲利10元和160元.該經(jīng)銷商希望銷售完這兩種商品,所獲利潤(rùn)不少于4100元.試問(wèn):該經(jīng)銷商有哪幾種進(jìn)貨方案?哪種方案獲利最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com