(2012•濱州)如圖,銳角三角形ABC的邊AB,AC上的高線CE和BF相交于點D,請寫出圖中的兩對相似三角形:    (用相似符號連接).
【答案】分析:要找相似三角形,就要用到相似三角形的判定方法:由高線可得一對直角相等,再找一對相等角就可以了.
解答:解:(1)在△BDE和△CDF中
∠BDE=∠CDF∠BED=∠CFD=90°
∴△BDE∽△CDF

(2)在△ABF和△ACE中
∵∠A=∠A,∠AFB=∠AEC=90°
∴△ABF∽△ACE
點評:熟練掌握相似三角形判定方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•濱州)如表是晨光中學男子籃球隊隊員的年齡統(tǒng)計:
 年齡 13  14   15  16
 人數(shù)  1  5  5  1
他們的平均年齡是
14.5
14.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•濱州)如圖,PA,PB是⊙O的切線,A,B為切點,AC是⊙O的直徑,∠P=50°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•濱州)如圖,在平面直角坐標系中,拋物線y=ax2+bx+c經(jīng)過A(-2,-4),O(0,0),B(2,0)三點.
(1)求拋物線y=ax2+bx+c的解析式;
(2)若點M是該拋物線對稱軸上的一點,求AM+OM的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•濱州)如圖1,l1,l2,l3,l4是一組平行線,相鄰2條平行線間的距離都是1個單位長度,正方形ABCD的4個頂點A,B,C,D都在這些平行線上.過點A作AF⊥l3于點F,交l2于點H,過點C作CE⊥l2于點E,交l3于點G.
(1)求證:△ADF≌△CBE;
(2)求正方形ABCD的面積;
(3)如圖2,如果四條平行線不等距,相鄰的兩條平行線間的距離依次為h1,h2,h3,試用h1,h2,h3表示正方形ABCD的面積S.

查看答案和解析>>

同步練習冊答案