【題目】如圖,已知二次函數(shù)的圖象過點(diǎn)O(0,0),A(4,0),B(2,﹣),M是OA的中點(diǎn).

(1)求此二次函數(shù)的解析式;

(2)設(shè)P是拋物線上的一點(diǎn),過P作x軸的平行線與拋物線交于另一點(diǎn)Q,要使四邊形PQAM是菱形,求P點(diǎn)的坐標(biāo);

(3)將拋物線在x軸下方的部分沿x軸向上翻折,得曲線OB′A(B′為B關(guān)于x軸的對(duì)稱點(diǎn)),在原拋物線x軸的上方部分取一點(diǎn)C,連接CM,CM與翻折后的曲線OB′A交于點(diǎn)D.若CDA的面積是MDA面積的2倍,這樣的點(diǎn)C是否存在?若存在求出C點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

【答案】(1) y=x2x.(2) P(1,﹣).(3) 點(diǎn)C的坐標(biāo)為(2+2)或(2﹣2,).

【解析】

試題(1)利用待定系數(shù)法求出二次函數(shù)的解析式;

(2)由四邊形PQAM是菱形,可知PQ=2且PQx軸,因此點(diǎn)P、Q關(guān)于對(duì)稱軸x=2對(duì)稱,可得點(diǎn)P橫坐標(biāo)為1,從而求出點(diǎn)P的坐標(biāo);

(3)假設(shè)存在滿足條件的點(diǎn)C.由CDA的面積是MDA面積的2倍,可得點(diǎn)C縱坐標(biāo)是點(diǎn)D縱坐標(biāo)的3倍,由此列方程求出點(diǎn)C的坐標(biāo).

試題解析:(1)拋物線過原點(diǎn),設(shè)其解析式為:y=ax2+bx.

拋物線經(jīng)過點(diǎn)A(4,0),B(2,﹣),

,解得,

二次函數(shù)解析式為:y=x2x.

(2)y=x2x=(x﹣2)2,

拋物線對(duì)稱軸為直線:x=2.

四邊形PQAM是菱形,

PQ=MA=2,PQx軸.

點(diǎn)P、Q關(guān)于對(duì)稱軸x=2對(duì)稱,

點(diǎn)P橫坐標(biāo)為1.

當(dāng)x=1時(shí),y==﹣

P(1,﹣).

(3)依題意,翻折之后的拋物線解析式為:y=﹣x2+x.

假設(shè)存在這樣的點(diǎn)C,

∵△CDA的面積是MDA面積的2倍,

CD=2MD,CM=3MD.

如圖所示,分別過點(diǎn)D、C作x軸的垂線,垂足分別為點(diǎn)E、點(diǎn)F,則有DECF.

,

CF=3DE,MF=3ME.

設(shè)C(x,x2x),

則MF=x﹣2,ME=MF=(x﹣2),OE=ME+OM=x+

D(x+,﹣(x+)2+(x+)).

CF=3DE,

x2x=3[﹣(x+)2+(x+)],

整理得:x2﹣4x﹣8=0,

解得:x1=2+2,x2=2﹣2

y1=,y2=

存在滿足條件的點(diǎn)C,點(diǎn)C的坐標(biāo)為(2+2,)或(2﹣2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象交于A(4,﹣2)、B(﹣2,n)兩點(diǎn),與x軸交于點(diǎn)C.

(1)求k2,n的值;

(2)請(qǐng)直接寫出不等式k1x+b<的解集;

(3)將x軸下方的圖象沿x軸翻折,點(diǎn)A落在點(diǎn)A處,連接AB,AC,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為2,點(diǎn)上,四邊形也是正方形,以為圓心,長為半徑畫,連結(jié),,則圖中陰影部分面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級(jí)學(xué)生立定跳遠(yuǎn)水平,隨機(jī)抽取該年級(jí)50名學(xué)生進(jìn)行測(cè)試,并把測(cè)試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.

學(xué)生立定跳遠(yuǎn)測(cè)試成績的頻數(shù)分布表

分組

頻數(shù)

1.2≤x<1.6

a

1.6≤x<2.0

12

2.0≤x<2.4

b

2.4≤x<2.8

10

請(qǐng)根據(jù)圖表中所提供的信息,完成下列問題:

(1)表中a=   ,b=   ,樣本成績的中位數(shù)落在   范圍內(nèi);

(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;

(3)該校九年級(jí)共有1000名學(xué)生,估計(jì)該年級(jí)學(xué)生立定跳遠(yuǎn)成績?cè)?/span>2.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了更好的開展學(xué)校特色體育教育,從全校八年級(jí)的各班分別隨機(jī)抽取了5名男生和5名女生,組成了一個(gè)容量為60的樣本,進(jìn)行各項(xiàng)體育項(xiàng)目的測(cè)試,了解他們的身體素質(zhì)情況.下表是整理樣本數(shù)據(jù),得到的關(guān)于每個(gè)個(gè)體的測(cè)試成績的部分統(tǒng)計(jì)表、圖:某校60名學(xué)生體育測(cè)試成績頻數(shù)分布表

成績

劃記

頻數(shù)

百分比

優(yōu)秀

正正正

a

30%

良好

正正正正正正

30

b

合格

9

15%

不合格

3

5%

合計(jì)

60

60

100%

(說明:40﹣﹣﹣55分為不合格,55﹣﹣﹣70分為合格,70﹣﹣﹣85分為良好,85﹣﹣﹣100分為優(yōu)秀)請(qǐng)根據(jù)以上信息,解答下列問題:

(1)表中的a=_____,b=_____;

(2)請(qǐng)根據(jù)頻數(shù)分布表,畫出相應(yīng)的頻數(shù)分布直方圖;

(3)如果該校八年級(jí)共有150名學(xué)生,根據(jù)以上數(shù)據(jù),估計(jì)該校八年級(jí)學(xué)生身體素質(zhì)良好及以上的人數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校教學(xué)樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時(shí),才能避免滑坡危險(xiǎn),學(xué)校為了消除安全隱患,決定對(duì)斜坡CD進(jìn)行改造,在保持坡腳C不動(dòng)的情況下,學(xué)校至少要把坡頂D向后水平移動(dòng)多少米才能保證教學(xué)樓的安全?(結(jié)果取整數(shù))

(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點(diǎn)A為圓心,AB長為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)BF為圓心,大于的長為半徑畫弧,兩弧交于一點(diǎn)P,連接AP并延長交BC于點(diǎn)E,連接EF

1)求證:四邊形ABEF是菱形.

2)設(shè)AEBF相交于點(diǎn)O,四邊形ABEF的周長為16,BF4,求AE的長和∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C是半圓O上一個(gè)動(dòng)點(diǎn),AB為半圓的直徑,D是弧BC的中點(diǎn),過點(diǎn)D作半圓O的切線DEAC的延長線于點(diǎn)E

1)求證:AEDE

2已知CE=2,DE=4,則AB=   ;

連接OCDC,當(dāng)BAC=   度時(shí),四邊形OBDC為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A為某封閉圖形邊界上一定點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿其邊界順時(shí)針勻速運(yùn)動(dòng)一周.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為x,線段AP的長為y.表示yx的函數(shù)關(guān)系的圖象大致如圖所示,則該封閉圖形可能是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案