【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖一,若△ABC是等邊三角形,且AB=AC=2,點D在線段BC上,
①求證:∠BCE+∠BAC=180°;
②當四邊形ADCE的周長取最小值時,求BD的長.
(2)若∠BAC60° ,當點D在射線BC上移動,則∠BCE和∠BAC 之間有怎樣的數(shù)量關系?并說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB為銳角,點D為射線BC上一點,連接AD,以AD為一邊且在AD的右側作正方形ADEF.
解答下列問題:
(1)如果AB=AC,∠BAC=90,當點D在線段BC上時(與點B不重合),如圖2,線段CF,BD所在直線位置關系為 ,數(shù)量關系為 .
(2)如果AB=AC,∠BAC=90,當點D在線段BC的延長線時,如圖3,(1)中的結論是否仍然成立,并說明理由。
(3)如果AB=AC,∠BAC是鈍角,點D在線段BC上,當∠ABC滿足什么條件時,CF⊥BC(點C、F不重合)畫出圖形,并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)學興趣小組想測量電線桿AB的高度,他們發(fā)現(xiàn)電線桿的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD與地面成30°角,且此時測得1米桿的影長為2米,則電線桿的高度約為米(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系內,四邊形OECB的頂點坐標分別是:B(2,5),C(8,5),E(10,0),點P(x,0)是線段OE上一點,設四邊形BPEC的面積為S.
(1)過點C作CD⊥x軸于點E,則CD= , 用含x的代數(shù)式表示PE= .
(2)求S與x的函數(shù)關系.
(3)當S=30時,直接寫出線段PE與PB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CD⊥AB,EF⊥AB,垂足分別為D、F,∠1=∠2,
(1)試判斷DG與BC的位置關系,并說明理由.
(2)若∠A=70°,∠BCG=40°,求∠AGD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】七年級某班組織班隊活動,班委會準備買一些獎品。.班長王倩拿15元錢去商店全部用來購買鋼筆和筆記本兩種獎品,已知鋼筆2元/支,筆記本1元/本,且每樣東西至少買一件。
【1】有多少種購買方案?請列舉所有可能的結果;
【2】從上述方案中任選一種方案購買,求買到的鋼筆與筆記本數(shù)量相等的概率。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的材料,回答問題:已知(x-2)(6+2x)>0,求x的取值范圍.
解:根據(jù)題意,得或
分別解這兩個不等式組,得x>2或x<-3.
故當x>2或x<-3時,(x-2)(6+2x)>0.
(1)由(x-2)(6+2x)>0,得出不等式組或體現(xiàn)了____思想.
。2)試利用上述方法,求不等式(x-3)(1-x)<0的解集.
附加題(15分,不計入總分)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E點為DF上的點,B為AC 上的點,∠1=∠2,∠C=∠D
求證: DF∥AC
證明:∵ ∠1=∠2(已知),∠1=∠3 ,∠2=∠4( ),
∴ ∠3=∠4( ),
∴ ∥__________( ).
∴ ∠C=∠ABD( ).
∵ ∠C=∠D( ),
∴ ∠D =__________( ).
∴ DF∥AC( ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com