【題目】如圖1,點E為矩形ABCD的邊AD上一點,點P從點B出發(fā)沿BE→ED→DC運動到點C停止,點Q從點B出發(fā)沿BC運動到點C停止,它們運動的速度都是1cm/s.若點P、Q同時開始運動,設(shè)運動時間為t(s),△BPQ的面積為y(cm2),已知yt之間的函數(shù)圖象如圖2所示.給出下列結(jié)論:0<t≤10時,△BPQ是等腰三角形;②SABE=48cm2;③14<t<22時,y=110﹣5t;④在運動過程中,使得△ABP是等腰三角形的P點一共有3個;△BPQ△BEA相似時,t=14.5.其中正確結(jié)論的序號是( 。

A. ①④⑤ B. ①②④ C. ①③④ D. ①③⑤

【答案】D

【解析】

根據(jù)題意,得到P、Q分別同時到達D、C可判斷①②,分段討論PQ位置后可以判斷③,再由等腰三角形的分類討論方法確定④,根據(jù)兩個點的相對位置判斷點PDC上時,存在BPQBEA相似的可能性,分類討論計算即可.

解:由圖象可知,點Q到達C時,點PEBE=BC=10,ED=4

故①正確

AE=10﹣4=6

t=10時,BPQ的面積等于

AB=DC=8

故②錯誤

14<t<22時,

故③正確;

分別以A、B為圓心,AB為半徑畫圓,將兩圓交點連接即為AB垂直平分線

則⊙A、BAB垂直平分線與點P運行路徑的交點是P,滿足ABP是等腰三角形

此時,滿足條件的點有4個,故④錯誤.

∵△BEA為直角三角形

∴只有點PDC邊上時,有BPQBEA相似

由已知,PQ=22﹣t

∴當時,BPQBEA相似

分別將數(shù)值代入

,

解得t=(舍去)或t=14.5

故⑤正確

故選:D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】AB是數(shù)軸上兩點,A對應(yīng)的數(shù)是-2,點B對應(yīng)的數(shù)是2. ABC是等邊三角形,DAB中點. MAC邊上,且AM=3CM.

1)求CD.

2)點PCD上的動點,確定點P使得PM+PA的值最小,并求出PM+PA的最小值.

3)過點M的直線與數(shù)軸交于點Q,且QM.Q對應(yīng)的數(shù)是t,結(jié)合圖形直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場購進甲、乙兩種空調(diào)共50臺.已知購進一臺甲種空調(diào)比購進一臺乙種空調(diào)進價少0.3萬元;用20萬元購進甲種空調(diào)數(shù)量是用40萬元購進乙種空調(diào)數(shù)量的2倍.請解答下列問題:

1)求甲、乙兩種空調(diào)每臺進價各是多少萬元?

2)若商場預(yù)計投入資金不少于10萬元,且購進甲種空調(diào)至少31臺,商場有哪幾種購進方案?

3)在(2)條件下,若甲種空調(diào)每臺售價1100元,乙種空調(diào)每臺售價4300元,甲、乙空調(diào)各有一臺樣機按八折出售,其余全部標價售出,商場從銷售這50臺空調(diào)獲利中拿出2520元作為員工福利,其余利潤恰好又可以購進以上空調(diào)共2臺.請直接寫出該商場購進這50臺空調(diào)各幾臺.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,,,都是等邊三角形,其邊長依次為2,4,6,,其中點的坐標為,點的坐標為,點的坐標為,點的坐標為,,按此規(guī)律排下去,則點的坐標為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料: 小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

均為正整數(shù)時,若,用含m、n的式子分別表示,得   ,   ;

2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2

3)若,且均為正整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為圓O的直徑,點C為圓O上一點,若∠BAC=∠CAM,過點C作直線l垂直于射線AM,垂足為點D.

(1)試判斷CD與圓O的位置關(guān)系,并說明理由;

(2)若直線lAB的延長線相交于點E,圓O的半徑為3,并且∠CAB=30°,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀理解)

已知:如圖,等腰直角三角形中,,平分線,交邊于點.

求證:.

證明:在上截取,連接,

則由已知條件易知:.

,∴是等腰直角三角形,

.

(數(shù)學思考)

現(xiàn)將原題中的平分線,交邊于點”換成“的外角平分線,交邊的延長線于點,如圖,其他條件不變,請你猜想線段之間的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰ABC中,AB=AC,BAC=50°BAC的平分線與AB的垂直平分線交于點O、點C沿EF折疊后與點O重合,則CEF的度數(shù)是(  )

A. 60° B. 55° C. 50° D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,添加以下條件,不能判定的是(

A.B.C.D.

查看答案和解析>>

同步練習冊答案