【題目】如圖,四邊形OBCD中的三個(gè)頂點(diǎn)在⊙O上,點(diǎn)A是優(yōu)弧BD上的一個(gè)動點(diǎn)(不與點(diǎn)B、D重合).
(1)當(dāng)圓心O在∠BAD內(nèi)部,∠ABO+∠ADO=50°時(shí),∠A = °;
(2)當(dāng)圓心O在∠BAD內(nèi)部,四邊形OBCD為平行四邊形時(shí),求∠C的度數(shù);
(3)當(dāng)圓心O在∠BAD外部,四邊形OBCD為平行四邊形時(shí),請直接寫出∠ABO與∠ADO的數(shù)量關(guān)系.
【答案】⑴500;(2)1200;(3)|∠ABO﹣∠ADO|=60°
【解析】
(1)連接OA,如圖1,根據(jù)等腰三角形的性質(zhì)得∠OAB=∠ABO,∠OAD=∠ADO,則∠BAD=∠OAB+∠OAD=∠ABO+∠ADO=50°;
(2)根據(jù)平行四邊形的性質(zhì)得∠BOD=∠BCD,再根據(jù)圓周角定理得∠BOD=2∠BAD,則∠BCD=2∠BAD,然后根據(jù)圓內(nèi)接四邊形的性質(zhì)由∠BCD+∠BAD =180°,易計(jì)算出∠BAD的度數(shù),從而得出結(jié)論;
(3)討論:當(dāng)∠OAB比∠ODA小時(shí),如圖2,與(1)一樣∠OAB=∠ABO,∠OAD=∠ADO,則∠OAD﹣∠OAB=∠ADO﹣∠ABO=∠BAD,由(2)得∠BAD=60°,所以∠ADO﹣∠ABO=60°;當(dāng)∠OAB比∠ODA大時(shí),用樣方法得到∠ABO﹣∠ADO=60°.
(1)連接OA,如圖1.
∵OA=OB,OA=OD.
∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠BAD=∠OAB+∠OAD=∠ABO+∠ADO=50°;
(2)∵四邊形OBCD為平行四邊形,∴∠BOD=∠BCD.
∵∠BOD=2∠BAD,∴∠BCD=2∠BAD.
∵∠BCD+∠BAD =180°,即3∠BAD =180°,∴∠BAD =60°,∴∠C=180°-60°=120°;
(3)當(dāng)∠OAB比∠ODA小時(shí),如圖2.
∵OA=OB,OA=OD.
∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠OAD﹣∠OAB=∠ADO﹣∠ABO=∠BAD,由(2)得∠BAD=60°,∴∠ADO﹣∠ABO=60°;
當(dāng)∠OAB比∠ODA大時(shí),同理可得∠ABO﹣∠ADO=60°.
綜上所述:|∠ABO﹣∠ADO|=60°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的口袋里裝著只有顏色不同的黑、白兩種顏色的球共20只,某學(xué)習(xí)小組作摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù),下表示活動進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次數(shù)m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的頻率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
請估算口袋中白球約是( )只.
A. 8 B. 9 C. 12 D. 13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠DAB=∠CAE,AD=AB,AC=AE.
(1)求證△ABE≌△ADC;
(2)設(shè)BE與CD交于點(diǎn)O,∠DAB=30°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程
(1)試證:無論m取任何實(shí)數(shù),方程都有兩個(gè)不相等的實(shí)數(shù)根.
(2)若方程有一個(gè)根為-4,求m的值及另一根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,于E,,D是AE上的一點(diǎn),且,連接BD,CD.
試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系,并說明理由;
如圖2,若將繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說明理由;
如圖3,若將中的等腰直角三角形都換成等邊三角形,其他條件不變.
試猜想BD與AC的數(shù)量關(guān)系,請直接寫出結(jié)論;
你能求出BD與AC的夾角度數(shù)嗎?如果能,請直接寫出夾角度數(shù);如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果將四根木條首尾相連,在相連處用螺釘連接,就能構(gòu)成一個(gè)平面圖形.如圖1是一個(gè)四邊形的木架,AB=AD=2cm,BC=5cm.
(1)扭動這個(gè)木架,四邊形的形狀就會改變,這說明了什么?
(2)如圖2,若固定三根木條AB、BC、AD不動,量得第四根木條CD=5cm,判斷此時(shí)∠B與∠D是否相等,并說明理由.
(3)在扭動這個(gè)木架過程中,當(dāng)測得A、C之間的距離為6cm時(shí),若CD的長度也是整數(shù),那么CD的長應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:
①;②;③;④;⑤
其中所有正確結(jié)論的序號是( )
A. ①②④ B. ①③④ C. ②③⑤ D. ①②④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們新定義一種三角形:兩邊平方和等于第三邊平方的兩倍的三角形叫做奇異三角形.
根據(jù)“奇異三角形”的定義,小華提出命題“等邊三角形一定是奇異三角形”是真命題還是假命題?
在中,,,,且,若是奇異三角形,求.
如圖,是的直徑,是上一點(diǎn)(不與點(diǎn)、重合),是半圓的中點(diǎn),、在直徑的兩側(cè),若在內(nèi)存在點(diǎn),使,.
①求證:是奇異三角形;
②當(dāng)是直角三角形時(shí),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠甲、乙兩名工人參加操作技能培訓(xùn).現(xiàn)分別從他們在培訓(xùn)期間參加的若干次測試成績中隨機(jī)抽取8次,記錄如下:
甲 | 95 | 82 | 88 | 81 | 93 | 79 | 84 | 78 |
乙 | 83 | 92 | 80 | 95 | 90 | 80 | 85 | 75 |
(1)請你計(jì)算這兩組數(shù)據(jù)的平均數(shù)、中位數(shù);
(2)現(xiàn)要從中選派一人參加操作技能比賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪名工人參加合適?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com