(2004•聊城模擬)全等三角形又叫做合同三角形.平面內(nèi)的合同三角形分為真正合同三角形和鏡面合同三角形.假如△ABC和△A′B′C′是全等三角形,且點A與點A′對應(yīng),點B與點B′對應(yīng),點C與點C′對應(yīng).當沿周界A-B-C-A及A′-B′-C′-A′環(huán)繞時,若運動方向相同,則稱它們是真正合同三角形(如圖①);若運動方向相反,則稱它們是鏡面合同三角形(如圖②).

兩個真正合同三角形,都可以在平面內(nèi)通過平移或旋轉(zhuǎn)使它們重合;而兩個鏡面合同三角形要重合,則必須將其中的一個翻轉(zhuǎn)180度.下列各組合同三角形中,屬于鏡面合同三角形的是( )
A.
B.
C.
D.
【答案】分析:認真閱讀題目,理解真正合同三角形和鏡面合同三角形的定義,然后根據(jù)各自的定義或特點進行解答.
解答:解:由題意知真正合同三角形和鏡面合同三角形的特點,可判斷要使C組的兩個三角形重合必須將其中的一個翻轉(zhuǎn)180°;
而其它組的全等三角形可以在平面內(nèi)通過平移或旋轉(zhuǎn)使它們重合.
故選C.
點評:此題考查了學生的閱讀理解能力及空間想象能力,較靈活.認真讀題,透徹理解題意是正確解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2004•聊城模擬)計算
sin30°
1+cos30°
+
tan45°
cot60°
的結(jié)果為
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2004•聊城模擬)為了測得聊城鐵塔的高度,小明在離鐵塔10米處的點C測得塔頂A的仰角為α,小亮在離鐵塔25米處的點D測得塔頂A的仰角為β(如圖),恰巧α+β=90度.小明和小亮很快求出了鐵塔AB的高度.你知道他倆是怎樣求出來的嗎?請寫出你的解題過程(結(jié)果精確到0.01米).

查看答案和解析>>

科目:初中數(shù)學 來源:2006年福建省福州市一中招生綜合素質(zhì)測試數(shù)學試卷(解析版) 題型:解答題

(2004•聊城模擬)如圖,正方形ABCD中,有一直徑為BC的半圓,BC=2cm,現(xiàn)有兩點E、F,分別從點B、點A同時出發(fā),點E沿線段BA以1cm/s的速度向點A運動,點F沿折線A-D-C以2cm/s的速度向點C運動,設(shè)點E離開點B的時間為t(秒).
(1)當t為何值時,線段EF與BC平行?
(2)設(shè)1<t<2,當t為何值時,EF與半圓相切?
(3)1≤t<2時,設(shè)EF與AC相交于點P,問點E、F運動時,點P的位置是否發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,請給予證明,并求AP:PC的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年山東省聊城市中考適應(yīng)性考試數(shù)學試卷(解析版) 題型:解答題

(2004•聊城模擬)如圖,正方形ABCD中,有一直徑為BC的半圓,BC=2cm,現(xiàn)有兩點E、F,分別從點B、點A同時出發(fā),點E沿線段BA以1cm/s的速度向點A運動,點F沿折線A-D-C以2cm/s的速度向點C運動,設(shè)點E離開點B的時間為t(秒).
(1)當t為何值時,線段EF與BC平行?
(2)設(shè)1<t<2,當t為何值時,EF與半圓相切?
(3)1≤t<2時,設(shè)EF與AC相交于點P,問點E、F運動時,點P的位置是否發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,請給予證明,并求AP:PC的值.

查看答案和解析>>

同步練習冊答案