【題目】如圖,正方形和,,,連接,.若繞點旋轉(zhuǎn),當最大時,__________.
【答案】24
【解析】
作DH⊥AE于H,如圖,由于AF=8,則△AEF繞點A旋轉(zhuǎn)時,點F在以A為圓心,8為半徑的圓上,當BF為此圓的切線時,∠ABF最大,即BF⊥AF,利用勾股定理計算出BF=6,接著證明△ADH≌△ABF得到DH=BF=6,然后根據(jù)三角形面積公式求解.
作DH⊥AE于H,如圖,
∵AF=8,當△AEF繞點A旋轉(zhuǎn)時,點F在以A為圓心,8為半徑的圓上,
∴當BF為此圓的切線時,∠ABF最大,即BF⊥AF,
在Rt△ABF中,BF= =6,
∵∠EAF=90°,
∴∠BAF+∠BAH=90°,
∵∠DAH+∠BAH=90°,
∴∠DAH=∠BAF,
在△ADH和△ABF中
,
∴△ADH≌△ABF(AAS),
∴DH=BF=6,
∴S△ADE=AEDH=×6×8=24.
故答案為24.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,AB=4,點P在上運動(點P不與點A、B重合),且∠APB=30°,設(shè)圖中陰影部分的面積為y.
(1)⊙O的半徑為 ;
(2)若點P到直線AB的距離為x,求y關(guān)于x的函數(shù)表達式,并直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A、B分別在反比例函數(shù)(x>0),(k<0,x>0)的圖象上.點B的橫坐標為4,且點B在直線y=x﹣5上.
(1)求k的值;(2)若OA⊥OB,求tan∠ABO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點為坐標原點.拋物線交軸于、兩點,交軸于點,直線經(jīng)過、兩點.
(1)求拋物線的解析式;
(2)過點作直線軸交拋物線于另一點,過點作軸于點,連接,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在二次函數(shù)的學(xué)習(xí)中,教材有如下內(nèi)容:
例1 函數(shù)圖象求一元二次方程的近似解(精確到0.1).
解:設(shè)有二次函數(shù),列表并作出它的圖象(圖1).
… | 0 | 1 | 2 | 3 | 4 | 5 | … | ||
… | … |
觀察拋物線和軸交點的位置,估計出交點的橫坐標分別約為和4.8,所以得出方程精確到0.1的近似解為,,利用二次函數(shù)的圖象求出一元二次方程的解的方法稱為圖象法,這種方法常用來求方程的近似解.
小聰和小明通過例題的學(xué)習(xí),體會到利用函數(shù)圖象可以求出方程的近似解.于是他們嘗試利用圖象法探宄方程的近似解,做法如下:
小聰?shù)淖龇ǎ毫詈瘮?shù),列表并畫出函數(shù)的圖象,借助圖象得到方程的近似解.
小明的做法:因為,所以先將方程的兩邊同時除以,變形得到方程,再令函數(shù)和,列表并畫出這兩個函數(shù)的圖象,借助圖象得到方程的近似解.
請你選擇小聰或小明的做法,求出方程的近似解(精確到0.1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y=2x﹣6與雙曲線的一個交點為A(m,2),與x軸交于點B,與y軸交于點C.
(1)點B的坐標 ,k的值 ;
(2)若點P在x軸上,且△APC的面積為16,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀對學(xué)生的成長有著深遠的影響,某中學(xué)為了解學(xué)生每周課余閱讀的時間,在本校隨機抽取了若干名學(xué)生進行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計圖表.
組別 | 時間(小時) | 頻數(shù)(人數(shù)) | 頻率 |
A | 0≤t≤0.5 | 6 | 0.15 |
B | 0.5≤t≤1 | a | 0.3 |
C | 1≤t≤1.5 | 10 | 0.25 |
D | 1.5≤t≤2 | 8 | b |
E | 2≤t≤2.5 | 4 | 0.1 |
合計 | 1 |
請根據(jù)圖表中的信息,解答下列問題:
(1)表中的a= ,b= ,中位數(shù)落在 組,將頻數(shù)分布直方圖補全;
(2)估計該校2000名學(xué)生中,每周課余閱讀時間不足0.5小時的學(xué)生大約有多少名?
(3)E組的4人中,有1名男生和3名女生,該校計劃在E組學(xué)生中隨機選出兩人向全校同學(xué)作讀書心得報告,請用畫樹狀圖或列表法求抽取的兩名學(xué)生剛好是1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,以為直徑的交于點,點是邊上一點(點不與點,重合),的延長線交于點,,且交于點.
(1)求證:.
(2)連接,,求證:.
(3)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)抽取了40名學(xué)生參加“平均每周課外閱讀時間”的調(diào)查,由調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖.
組別 | 時間/小時 | 頻數(shù)/人數(shù) |
A組 | 2 | |
B組 | m | |
C組 | 10 | |
D組 | 12 | |
E組 | 7 | |
F組 | 4 |
頻數(shù)分布表
請根據(jù)圖表中的信息解答下列問題:
(1)求頻數(shù)分布表中m的值;
(2)求B組,C組在扇形統(tǒng)計圖中分別對應(yīng)扇形的圓心角度數(shù),并補全扇形統(tǒng)計圖;
(3)已知F組的學(xué)生中,只有1名男生,其余都是女生,用列舉法求以下事件的概率:從F組中隨機選取2名學(xué)生,恰好都是女生。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com