(2012•拱墅區(qū)二模)2
2
,
5
2
,-π,-3 這四個數(shù)中,最小的數(shù)是
;最大的數(shù)是
2
2
2
2
分析:負數(shù)都小于正數(shù)得出-π、-3小,兩個負數(shù)其絕對值大的反而小,即可得出-π最小,而2
2
≈2.828>
5
2
即可求出最大數(shù).
解答:解:∵-π<-3<
5
2
<2
2
,
∴最小的數(shù)是-π,最大的數(shù)是2
2
,
故答案為:-π,2
2
點評:本題考查了實數(shù)的大小比較的應(yīng)用,正數(shù)都大于0,正數(shù)大于一切負數(shù),兩個負數(shù)其絕對值大的反而小,負數(shù)都小于0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•拱墅區(qū)二模)如圖,在平面直角坐標系中,?ABCO的頂點A在x軸上,頂點B的坐標為(4,6).若直線y=kx+3k將?ABCO分割成面積相等的兩部分,則k的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•拱墅區(qū)二模)已知△ABC中,∠A=α.在圖(1)中∠B、∠C的角平分線交于點O1,則可計算得∠BO1C=90°+
1
2
α
;在圖(2)中,設(shè)∠B、∠C的兩條三等分角線分別對應(yīng)交于O1、O2,則∠BO2C=
60°+
2
3
α
60°+
2
3
α
;請你猜想,當(dāng)∠B、∠C同時n等分時,(n-1)條等分角線分別對應(yīng)交于O1、O2,…,On-1,如圖(3),則∠BOn-1C=
(n-1)α
n
+
180°
n
(n-1)α
n
+
180°
n
(用含n和α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•拱墅區(qū)二模)設(shè)a=x1+x2,b=x1•x2,那么|x1-x2|可以表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•拱墅區(qū)二模)下列計算正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•拱墅區(qū)二模)當(dāng)分式方程
x-1
x+1
=1+
a
x+1
中的a取下列某個值時,該方程有解,則這個a是( 。

查看答案和解析>>

同步練習(xí)冊答案