【題目】郴州市正在創(chuàng)建全國(guó)文明城市,某校擬舉辦創(chuàng)文知識(shí)搶答賽,欲購(gòu)買(mǎi)A、B兩種獎(jiǎng)品以鼓勵(lì)搶答者.如果購(gòu)買(mǎi)A20件,B15件,共需380元;如果購(gòu)買(mǎi)A15件,B10件,共需280元.

(1)A、B兩種獎(jiǎng)品每件各多少元?

(2)現(xiàn)要購(gòu)買(mǎi)A、B兩種獎(jiǎng)品共100件,總費(fèi)用不超過(guò)900元,那么A種獎(jiǎng)品最多購(gòu)買(mǎi)多少件?

【答案】(1)A種獎(jiǎng)品每件16元,B種獎(jiǎng)品每件4元.(2)A種獎(jiǎng)品最多購(gòu)買(mǎi)41件.

【解析】1)設(shè)A種獎(jiǎng)品每件x元,B種獎(jiǎng)品每件y元,根據(jù)如果購(gòu)買(mǎi)A20件,B15件,共需380元;如果購(gòu)買(mǎi)A15件,B10件,共需280,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;

(2)設(shè)A種獎(jiǎng)品購(gòu)買(mǎi)a件,則B種獎(jiǎng)品購(gòu)買(mǎi)(100﹣a)件,根據(jù)總價(jià)=單價(jià)×購(gòu)買(mǎi)數(shù)量結(jié)合總費(fèi)用不超過(guò)900元,即可得出關(guān)于a的一元一次不等式,解之取其中最大的整數(shù)即可得出結(jié)論.

1)設(shè)A種獎(jiǎng)品每件x元,B種獎(jiǎng)品每件y元,

根據(jù)題意得:,

解得:

答:A種獎(jiǎng)品每件16元,B種獎(jiǎng)品每件4元;

(2)設(shè)A種獎(jiǎng)品購(gòu)買(mǎi)a件,則B種獎(jiǎng)品購(gòu)買(mǎi)(100﹣a)件,

根據(jù)題意得:16a+4(100﹣a)≤900,

解得:a≤,

a為整數(shù),

a≤41,

答:A種獎(jiǎng)品最多購(gòu)買(mǎi)41件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC 中,∠ACB=90°,AC=6cm,BC=8cm,點(diǎn) P A 點(diǎn)出發(fā)沿 A-C-B 路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為 B點(diǎn);點(diǎn) Q B 點(diǎn)出發(fā)沿 B-C-A 路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為 A 點(diǎn),點(diǎn) P Q 分別以 1cm/s xcm / s 的運(yùn)動(dòng)速度 同時(shí)開(kāi)始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過(guò) P Q PE⊥ l E,QF⊥ l F.

(1)如圖,當(dāng) x 2 時(shí),設(shè)點(diǎn) P 運(yùn)動(dòng)時(shí)間為 ts ,當(dāng)點(diǎn) P AC 上,點(diǎn) Q BC 上時(shí):

用含 t 的式子表示 CP CQ,則 CP= cm,CQ= cm

當(dāng) t 2 時(shí),PEC QFC 全等嗎?并說(shuō)明理由;

(2)請(qǐng)問(wèn):當(dāng) x 3 時(shí),PEC QFC 有沒(méi)有可能全等?若能,直接寫(xiě)出符合條件的 t 的值;若不能,請(qǐng)說(shuō)明 理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩個(gè)不透明的盒子,甲盒子中裝有3張卡片,卡片上分別寫(xiě)著3cm、7cm、9cm;乙盒子中裝有4張卡片,卡片上分別寫(xiě)著2cm、4cm、6cm、8cm;盒子外有一張寫(xiě)著5cm的卡片.所有卡片的形狀、大小都完全相同.現(xiàn)隨機(jī)從甲、乙兩個(gè)盒子中各取出一張卡片,與盒子外的卡片放在一起,用卡片上標(biāo)明的數(shù)量分別作為一條線(xiàn)段的長(zhǎng)度.
(1)請(qǐng)用樹(shù)狀圖或列表的方法求這三條線(xiàn)段能組成三角形的概率;
(2)求這三條線(xiàn)段能組成直角三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B,C,D在一條直線(xiàn)上,△ABC,△ADE是等邊三角形,若CE=15cm,CD=6cm,則AC=__,∠ECD=__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,面積為6cm2的△ABC紙片沿BC方向平移至△DEF的位置,平移的距離是BC長(zhǎng)的2倍,則△ABC紙片掃過(guò)的面積為( )

A.18cm2
B.21cm2
C.27cm2
D.30cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四邊形ABCD的面積是18,則DP的長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為放置在水平桌面上的臺(tái)燈的平面示意圖,燈臂AO長(zhǎng)為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線(xiàn)OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺(tái)燈照亮水平面的寬度BC(不考慮其他因素,結(jié)果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26, ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD與正方形A1B1C1D1關(guān)于某點(diǎn)中心對(duì)稱(chēng),已知A, D1,D三點(diǎn)的坐標(biāo)分別是(0,4),(03),(02.

(1)對(duì)稱(chēng)中心的坐標(biāo);

(2)寫(xiě)出頂點(diǎn)B, C, B1 , C1的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案