【題目】為增強(qiáng)學(xué)生體質(zhì),各學(xué)校普遍開展了陽(yáng)光體育活動(dòng),某校為了解全校1000名學(xué)生每周課外體育活動(dòng)時(shí)間的情況,隨機(jī)調(diào)查了其中的50名學(xué)生,對(duì)這50名學(xué)生每周課外體育活動(dòng)時(shí)間x(單位:小時(shí))進(jìn)行了統(tǒng)計(jì).根據(jù)所得數(shù)據(jù)繪制了一幅不完整的統(tǒng)計(jì)圖,并知道每周課外體育活動(dòng)時(shí)間在6≤x<8小時(shí)的學(xué)生人數(shù)占24%.根據(jù)以上信息及統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)本次調(diào)查樣本容量是 ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖中空缺的部分;
(3)估計(jì)全校學(xué)生每周課外體育活動(dòng)時(shí)間不少于6小時(shí)的人數(shù).
(4)求這50名學(xué)生每周課外體育活動(dòng)時(shí)間的平均數(shù).
【答案】(1)50;(2)補(bǔ)全的頻數(shù)分布直方圖見解析;(3)300;(4)5.
【解析】
(1)根據(jù)題意可知本次調(diào)查的樣本容量;
(2)根據(jù)題目中的數(shù)據(jù)可以計(jì)算出6≤x<8小時(shí)的學(xué)生人數(shù),然后即可計(jì)算出2≤x<4小時(shí)的學(xué)生人數(shù),從而可以將頻數(shù)分布直方圖補(bǔ)充完整;
(3)根據(jù)直方圖中的數(shù)據(jù)可以計(jì)算出全校學(xué)生每周課外體育活動(dòng)時(shí)間不少于6小時(shí)的人數(shù);
(4)據(jù)直方圖中的數(shù)據(jù)即可計(jì)算出這50名學(xué)生每周課外體育活動(dòng)時(shí)間的平均數(shù).
解:(1)由題意可得,本調(diào)查的樣本容量是50,
故答案為:50;
(2)6≤x<8小時(shí)的學(xué)生人數(shù)為:50×24%=12,
2≤x<4小時(shí)的學(xué)生人數(shù)為:50﹣5﹣22﹣12﹣3=8,
補(bǔ)全的頻數(shù)分布直方圖如下圖所示;
(3)1000×=300(人),
則全校學(xué)生每周課外體育活動(dòng)時(shí)間不少于6小時(shí)的有300人.
(4)這50名學(xué)生每周課外體育活動(dòng)時(shí)間的平均數(shù)為:×(1×5+3×8+5×22+7×12+9×3)=5h.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程x2-(k+2)x+k-1=0
(1)若方程的一個(gè)根為 -1,求的值和方程的另一個(gè)根;
(2)求證:不論取何值,該方程都有兩個(gè)不相等的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,拋物線y=ax2﹣2ax+4(a<0)交x軸于點(diǎn)A、B,與y軸交于點(diǎn)C,AB=6.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點(diǎn)R為第一象限的拋物線上一點(diǎn),分別連接RB、RC,設(shè)△RBC的面積為s,點(diǎn)R的橫坐標(biāo)為t,求s與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,如圖3,點(diǎn)D在x軸的負(fù)半軸上,點(diǎn)F在y軸的正半軸上,點(diǎn)E為OB上一點(diǎn),點(diǎn)P為第一象限內(nèi)一點(diǎn),連接PD、EF,PD交OC于點(diǎn)G,DG=EF,PD⊥EF,連接PE,∠PEF=2∠PDE,連接PB、PC,過(guò)點(diǎn)R作RT⊥OB于點(diǎn)T,交PC于點(diǎn)S,若點(diǎn)P在BT的垂直平分線上,OB﹣TS=,求點(diǎn)R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠ACB=90°,AC>BC,分別以△ABC的邊AB,BC,CA為一邊向△ABC外作正方形ABDE,正方形BCMN,正方形CAFG,連接EF,GM,設(shè)△AEF,△CGM的面積分別為S1,S2,則下列結(jié)論正確的是( 。
A.S1=S2B.S1<S2C.S1>S2D.S1≤S2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2﹣2mx+m2﹣3(m是常數(shù))
(1)證明:無(wú)論m取什么實(shí)數(shù),該拋物線與x軸都有兩個(gè)交點(diǎn).
(2)設(shè)拋物線的頂點(diǎn)為A,與x軸的兩個(gè)交點(diǎn)分別為B、D,點(diǎn)B在點(diǎn)D的右側(cè),與y軸的交點(diǎn)為 C.
①若點(diǎn)P為△ABD的外心,求點(diǎn)P的坐標(biāo)(用含m的式子表示);
②當(dāng)|m|≤,m≠0時(shí),△ABC的面積是否有最大值?如果有,請(qǐng)求出最大值;如果沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△AOB中,∠AOB=90°,點(diǎn)A的坐標(biāo)為(2,1),BO=2,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)B,則k的值為( 。
A.﹣2B.﹣4C.4D.﹣8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店經(jīng)銷A、B兩種商品,現(xiàn)有如下信息:
信息1:A、B兩種商品的進(jìn)貨單價(jià)之和是3元;
信息2:A商品零售單價(jià)比進(jìn)貨單價(jià)多1元,B商品零售單價(jià)比進(jìn)貨單價(jià)的2倍少1元;
信息3:按零售單價(jià)購(gòu)買A商品3件和B商品2件,共付12元.
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)求A、B兩種商品的零售單價(jià);
(2)該商店平均每天賣出A商品500件和B商品1500件.經(jīng)調(diào)查發(fā)現(xiàn),A種商品零售單價(jià)每降0.1元,A種商品每天可多銷售100件.商店決定把A商品的零售單價(jià)下降m(m>0)元,B商品的零售單價(jià)和銷量都不變,在不考慮其他因素的條件下,當(dāng)m為多少時(shí),商品每天銷售A、B兩種商品獲取的總利潤(rùn)為2000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,點(diǎn)D是BC上一點(diǎn),∠ADE=∠B,
(1)求證:△ABD~△DCE;
(2)點(diǎn)F在AD上,且=,求證:EF∥CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=(a2+1)x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣3,t)、B(4,t)兩點(diǎn),則不等式(a2+1)(x-2)2+bx<2b-c+t的解集是_____________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com