【題目】如圖,在矩形ABCD中,AB2,BC4,對角線ACBD交于點O,點EBC邊上,DEAC交于點F,∠CDE=∠CBD

求:(1CE的長;(2EF的長.

【答案】1CE1;(2EF

【解析】

1)由在矩形ABCD中,∠EDC=ADB,易證得△CDE∽△CBD,然后由相似三角形的對應邊成比例,求得答案;

2)首先求得△CDE的面積,然后證得△ADF∽△CEF,即可得:EFDE=15,根據(jù)勾股定理得到DE,于是得到結論.

解:(1)∵四邊形ABCD是矩形,AB2,BC4,

ADBC,CDAB2,

∴∠ADB=∠CBD

∵∠EDC=∠ADB,

∴∠EDC=∠CBD,

∵∠ECD=∠DCB

∴△CDE∽△CBD,

CECDCDCB

CE224,

解得:CE1

2)∵ADBC,

∴△ADF∽△CEF,

DFEFADCE41,

EFDE15,

∵∠DCB90°,

DE,

EF

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:AD為△ABC的中線,過B、C兩點分別作AD所在直線的垂線段BECF,EF為垂足,過點EEGABBC于點H,連結HF并延長交AB于點P。

1)求證:DE=DF

2)若;①求:的值;②求證:四邊形HGAP為平行四邊形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為改善教學條件,學校準備對現(xiàn)有多媒體設備進行升級改造,已知購買3個鍵盤和1個鼠標需要190元;購買2個鍵盤和3個鼠標需要220元;

1)求鍵盤和鼠標的單價各是多少元?

2)經(jīng)過與經(jīng)銷商洽談,鍵盤打八折,鼠標打八五折.若學校計劃購買鍵盤和鼠標共50件,且總費用不超過1820元,則最多可購買鍵盤多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】速度分別為100km/hakm/h0a100)的兩車分別從相距s千米的兩地同時出發(fā),沿同一方向勻速前行.行駛一段時間后,其中一車按原速度原路返回,直到與另一車相遇時兩車停止.在此過程中,兩車之間的距離ykm)與行駛時間th)之間的函數(shù)關系如圖所示.下列說法:①a60;②b2;③cb+;④若s60,則b.其中說法正確的是( �。�

A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)ykx+bk≠0)的圖象與反比例函數(shù)yx>0,m≠0)的圖象交于點C,與x軸、y軸分別交于點D、B,已知OB=3,點C的橫坐標為4,cos∠0BD

(1)求一次函數(shù)及反比例函數(shù)的表達式;

(2)將一次函數(shù)圖象向下平移,使其經(jīng)過原點O,與反比例函數(shù)圖象在第四象限內的交點為A,連接AC,求四邊形OACB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙C的直徑,M、D兩點在AB的延長線上,E是⊙C上的點,且DE2DB· DA.延長AEF,使AEEF,設BF10cos∠BED=.

(1)求證:△DEB∽△DAE;

(2)DA,DE的長;

(3)若點FBE、M三點確定的圓上,求MD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有A、B兩個轉盤,其中轉盤A被分成4等份,轉盤B被分成3等份,并在每一份內標上數(shù)字.現(xiàn)甲、乙兩人同時各轉動其中一個轉盤,轉盤停止后(當指針指在邊界線上時視為無效,重轉),若將A轉盤指針指向的數(shù)字記為xB轉盤指針指向的數(shù)字記為y,從而確定點P的坐標為Pxy).

1)請用列表或畫樹狀圖的方法寫出所有可能得到的點P的坐標;

2)計算點P在函數(shù)y=圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市智慧閱讀活動正如火如茶地進行.某班學習委員為了解11月份全班同學課外閱讀的情況,調查了全班同學11月份讀書的冊數(shù),并根據(jù)調查結果繪制了如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖:

1)扇形統(tǒng)計圖中“3冊”部分所對應的圓心角的度數(shù)是 ,并把條形統(tǒng)計圖補充完整;

2)該班的學習委員11月份的讀書冊數(shù)為4冊,若該班的班主任從11月份讀書4冊的學生中隨機抽取兩名同學參加學校舉行的知識競賽,請用列表法或畫樹狀圖求恰好有一名同學是學習委員的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果三角形的兩個內角αβ滿足2α+β=90°,那么我們稱這樣的三角形為準互余三角形”.

(1)若ABC準互余三角形”,C>90°,A=60°,則∠B=   °;

(2)如圖①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明ABD準互余三角形.試問在邊BC上是否存在點E(異于點D),使得ABE也是準互余三角形?若存在,請求出BE的長;若不存在,請說明理由.

(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC準互余三角形,求對角線AC的長.

查看答案和解析>>

同步練習冊答案
闂佺ǹ楠忛幏锟� 闂傚倸鍋婇幏锟�