(2012•泉州)如圖,O為坐標(biāo)原點(diǎn),直線l繞著點(diǎn)A(0,2)旋轉(zhuǎn),與經(jīng)過(guò)點(diǎn)C(0,1)的二次函數(shù)y=
14
x2+h的圖象交于不同的兩點(diǎn)P、Q.
(1)求h的值;
(2)通過(guò)操作、觀察,算出△POQ的面積的最小值(不必說(shuō)理);
(3)過(guò)點(diǎn)P、C作直線,與x軸交于點(diǎn)B,試問(wèn):在直線l的旋轉(zhuǎn)過(guò)程中,四邊形AOBQ是否為梯形?若是,請(qǐng)說(shuō)明理由;若不是,請(qǐng)指出四邊形的形狀.
分析:(1)根據(jù)二次函數(shù)圖象上的點(diǎn)的坐標(biāo)特征,利用待定系數(shù)法求得h的值.
(2)該小題應(yīng)從三角形的面積公式入手分析,首先要選取合適的底和高;在△POQ中,OA的長(zhǎng)是不變的,那么若以O(shè)A為底,P、Q到y(tǒng)軸的距離和為高,即可得到△PQO的面積.先設(shè)P點(diǎn)橫坐標(biāo),然后根據(jù)拋物線、直線PA的解析式求出Q點(diǎn)橫坐標(biāo),通過(guò)不等式的相關(guān)知識(shí)即可解出P、Q到y(tǒng)軸距離和的最小值.
(3)判斷四邊形AOBQ的形狀,可從四個(gè)頂點(diǎn)的坐標(biāo)特征上來(lái)判斷.首先設(shè)出P、Q的坐標(biāo),然后根據(jù)點(diǎn)P、C求出直線BC的解析式,進(jìn)而表示出點(diǎn)B的坐標(biāo),然后再通過(guò)直線PQ以及P、A、Q三點(diǎn)坐標(biāo),求出Q、B兩點(diǎn)坐標(biāo)之間的關(guān)聯(lián),進(jìn)而判斷該四邊形是否符合梯形的特征.(需要注意的是:判定梯形的條件:一組對(duì)邊平行且另一組對(duì)邊不平行)
解答:解:(1)∵拋物線y=
1
4
x2+h經(jīng)過(guò)點(diǎn)C(0,1),
1
4
×0+h=1,
解得h=1.

(2)依題意,設(shè)拋物線y=
1
4
x2+1上的點(diǎn),P(a,
1
4
a2+1)、Q(b,
1
4
b2+1)(a<0<b)
過(guò)點(diǎn)A的直線l:y=kx+2經(jīng)過(guò)點(diǎn)P、Q,
1
4
a2+1=ak+2…①
1
4
b2+1=bk+2…②
①×b-②×a得:
1
4
(a2b-b2a)+b-a=2(b-a),
化簡(jiǎn)得:b=-
4
a
;
∴S△POQ=
1
2
OA•|xQ-xP|=
1
2
•OA•|-
4
a
-a|=(-
4
a
)+(-a)≥2•
(-
4
a
)•(-a)
=4
由上式知:當(dāng)-
4
a
=-a,即|a|=|b|(P、Q關(guān)于y軸對(duì)稱)時(shí),△POQ的面積最;
即PQ∥x軸時(shí),△POQ的面積最小,且POQ的面積最小為4.

(3)連接BQ,若l與x軸不平行(如圖),即PQ與x軸不平行,
依題意,設(shè)拋物線y=
1
4
x2+1上的點(diǎn),P(a,
1
4
a2+1)、Q(b,
1
4
b2+1)(a<0<b)
直線BC:y=k1x+1過(guò)點(diǎn)P,
1
4
a2+1=ak1+1,得k1=
1
4
a,
即y=
1
4
ax+1.
令y=0得:xB=-
4
a

同理,由(2)得:b=-
4
a

∴點(diǎn)B與Q的橫坐標(biāo)相同,
∴BQ∥y軸,即BQ∥OA,
又∵AQ與OB不平行,
∴四邊形AOBQ是梯形,
據(jù)拋物線的對(duì)稱性可得(a>0>b)結(jié)論相同.
故在直線l旋轉(zhuǎn)的過(guò)程中:當(dāng)l與x軸不平行時(shí),四邊形AOBQ是梯形;當(dāng)l與x軸平行時(shí),四邊形AOBQ是正方形.
點(diǎn)評(píng):題目考查了二次函數(shù)解析式的確定、函數(shù)圖象交點(diǎn)坐標(biāo)的求法、不等式的應(yīng)用、三角形面積的解法、梯形的判定等知識(shí),綜合性強(qiáng),難度較大.注意在判定梯形時(shí)不要遺漏“一邊不平行”的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•泉州)如圖,在矩形ABCD中,AB=1,AD=2,AD繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)D落在BC上點(diǎn)D′時(shí),則AD′=
2
2
,∠AD′B=
30
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•泉州)如圖是兩個(gè)長(zhǎng)方體堆成的物體,則這一物體的正視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•泉州)如圖,在△ABC中,∠A=60°,∠B=40°,點(diǎn)D、E分別在BC、AC的延長(zhǎng)線上,則∠1=
80
80
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•泉州)如圖,在方格紙中(小正方形的邊長(zhǎng)為1),反比例函數(shù)y=
k
x
與直線的交點(diǎn)A、B均在格點(diǎn)上,根據(jù)所給的直角坐標(biāo)系(O是坐標(biāo)原點(diǎn)),解答下列問(wèn)題:
(1)分別寫(xiě)出點(diǎn)A、B的坐標(biāo)后,把直線AB向右平移5個(gè)單位,再向上平移5個(gè)單位,畫(huà)出平移后的直線A′B′;
(2)若點(diǎn)C在函數(shù)y=
k
x
的圖象上,△ABC是以AB為底的等腰三角形,請(qǐng)寫(xiě)出點(diǎn)C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案