【題目】如圖,A、B、C是三個(gè)垃圾存放點(diǎn),點(diǎn)B、C分別位于點(diǎn)A的正北和正東方向,AC=200米,編號為1﹣6號的6名同學(xué)分別測得∠C的度數(shù)如下表:
1號 | 2號 | 3號 | 4號 | 5號 | 6號 | |
∠C(單位:度) | 37 | 36 | 37 | 40 | 34 | 38 |
他們又調(diào)查了各點(diǎn)的垃圾量,并繪制了下列尚不完整的統(tǒng)計(jì)圖,如圖:
(1)求表中∠C度數(shù)的平均數(shù),眾數(shù)和中位數(shù);
(2)求A處的垃圾量,并將圖2補(bǔ)充完整;
(3)用(1)中的作為∠C的度數(shù),要將A處的垃圾沿道路AB都運(yùn)到B處,已知運(yùn)送1千克垃圾每米的費(fèi)用為0.005元,求運(yùn)垃圾所需的費(fèi)用:(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)
【答案】(1)∠C度數(shù)的平均數(shù)、眾數(shù)、中位數(shù)都等于37;(2)見解析;(3)運(yùn)垃圾所需費(fèi)用為60元.
【解析】
(1)根據(jù)平均數(shù)、眾數(shù)中位數(shù)的定義計(jì)算即可;(2)A處的垃圾量320-240=80千克,畫出條形圖即可;(3)在Rt△ABC中,AB=ACtan37°=150,所以運(yùn)垃圾所需費(fèi)用=0.005×150×80=60元;
(1)=37.
所以表中∠C度數(shù)的平均數(shù)、眾數(shù)、中位數(shù)都等于37.
(2)A處的垃圾量320﹣240=80千克,
條形圖如圖所示:
(3)在Rt△ABC中,AB=ACtan37°=150,
所以運(yùn)垃圾所需費(fèi)用=0.005×150×80=60元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(2,﹣1),B(1,﹣2),C(3,﹣3).
(1)將△ABC向上平移4個(gè)單位長度得到△A1B1C1,請畫出△A1B1C1.
(2)請畫出與△ABC關(guān)于y軸對稱的△A2B2C2.
(3)請寫出A1、A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD,BE.以下三個(gè)結(jié)論:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°.其中結(jié)論正確的結(jié)論是()
A.①②③B.①②C.①③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長方形紙片沿折疊后,使得點(diǎn)與點(diǎn)重合,點(diǎn)落在點(diǎn)的位置上.
(1)若,求的度數(shù);
(2)求證:;
(3)若,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=13,BC=10,AD⊥BC,BE⊥AC,P為AD上一動點(diǎn),則PE+PC的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,從頂點(diǎn)A引兩條射線分別交BC,CD于點(diǎn)E,F(xiàn),且∠EAF=45°.
求證:BE+DF=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB=4,點(diǎn)D為AB的中點(diǎn),以點(diǎn)D為圓心作圓,半圓恰好經(jīng)過三角形的直角頂點(diǎn)C,以點(diǎn)D為頂點(diǎn),作90°的∠EDF,與半圓交于點(diǎn)E,F(xiàn),則圖中陰影部分的面積是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑為5,PA是⊙O的一條切線,切點(diǎn)為A,連接PO并延長,交⊙O于點(diǎn)B,過點(diǎn)A作AC⊥PB交⊙O于點(diǎn)C、交PB于點(diǎn)D,連接BC,當(dāng)∠P=30°時(shí),
(1)求弦AC的長;
(2)求證:BC∥PA.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com