【題目】如圖,已知正方形ABCD,點(diǎn)M是邊BA延長線上的動點(diǎn)(不與點(diǎn)A重合),且AM<AB,△CBE由△DAM平移得到.若過點(diǎn)E作EH⊥AC,H為垂足,則有以下結(jié)論:
①點(diǎn)M位置變化,使得∠DHC=60°時,2BE=DM;
②無論點(diǎn)M運(yùn)動到何處,都有DM=HM;
③無論點(diǎn)M運(yùn)動到何處,∠CHM一定大于135°.其中正確結(jié)論的序號為( )
A.①③B.①②C.②③D.①②③
【答案】D
【解析】
根據(jù)正方形的性質(zhì)可證得△MEH≌△DAH,再得到△DHM是等腰直角三角形,故DM=HM,②正確;當(dāng)∠DHC=60°時,可求得∠ADM=45°﹣15°=30°,故Rt△ADM中,DM=2AM,DM=2BE,①正確;再根據(jù)點(diǎn)M是邊BA延長線上的動點(diǎn)(不與點(diǎn)A重合),且AM<AB,∠AHM<∠BAC=45°,即可判斷.
由題可得,AM=BE,
∴AB=EM=AD,
∵四邊形ABCD是正方形,EH⊥AC,
∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,
∴EH=AH,
∴△MEH≌△DAH(SAS),
∴∠MHE=∠DHA,MH=DH,
∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,
∴DM=HM,故②正確;
當(dāng)∠DHC=60°時,∠ADH=60°﹣45°=15°,
∴∠ADM=45°﹣15°=30°,
∴Rt△ADM中,DM=2AM,
即DM=2BE,故①正確;
∵點(diǎn)M是邊BA延長線上的動點(diǎn)(不與點(diǎn)A重合),且AM<AB,
∴∠AHM<∠BAC=45°,
∴∠CHM>135°,故③正確;
由上可得正確結(jié)論的序號為①②③.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兒童節(jié)前,某玩具商店根據(jù)市場調(diào)查,用3000元購進(jìn)一批兒童玩具,上市后很快脫銷,接著又用5400元購進(jìn)第二批這種玩具,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進(jìn)價(jià)多了10元.
(1)求第一批玩具每套的進(jìn)價(jià)是多少元?
(2)如果這兩批玩具每套售價(jià)相同,且全部售完后總利潤不低于25%,那么每套玩具售價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,E為斜邊AB的中點(diǎn),點(diǎn)P是射線BC上的一個動點(diǎn),連接AP、PE,將△AEP沿著邊PE折疊,折疊后得到△EPA′,當(dāng)折疊后△EPA′與△BEP的重疊部分的面積恰好為△ABP面積的四分之一,則此時BP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市甲、乙、丙三個景區(qū)是人們節(jié)假日游玩的熱點(diǎn)景區(qū),某學(xué)校對九(5)班學(xué)生“五一”小長假隨父母到這三個景區(qū)游玩的計(jì)劃做了全面調(diào)查,調(diào)查分四個類別A:游三個景區(qū):B:游兩個景區(qū);C:游一個景區(qū):D:不到這三個景區(qū)游玩,現(xiàn)根據(jù)調(diào)查結(jié)果繪制了不完全的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖如下:
請結(jié)合圖中信息解答下列問題:
(1)九(5)班現(xiàn)有學(xué)生人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求在扇形統(tǒng)計(jì)圖中表示“B類別”的扇形的圓心角的度數(shù);
(3)根據(jù)調(diào)查顯示,小劉和小何都選擇“C類別”,求他倆游玩的恰好是同一景區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+5x+n經(jīng)過點(diǎn)A(1,0),與y軸交于點(diǎn)B.
(1)求拋物線的解析式;
(2)P是y軸正半軸上一點(diǎn),且△PAB是以AB為腰的等腰三角形,試求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),CN為⊙O的切線,OM⊥AB于點(diǎn)O,分別交AC、CN于D、M兩點(diǎn).
(1)求證:MD=MC;
(2)若⊙O的半徑為5,AC=4,求MC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了踐行“金山銀山,不如綠水青山”的環(huán)保理念,重外環(huán)保小組的孩子們參與社區(qū)公益活動——收集廢舊電池,活動開展一個月后,經(jīng)過統(tǒng)計(jì)發(fā)現(xiàn),全組成員平均每人收集了顆廢舊電池,其中,收集數(shù)量低于顆的同學(xué)平均每人收集了顆,收集數(shù)量不低于顆的同學(xué)平均每人收集了顆,數(shù)學(xué)王老師發(fā)現(xiàn),若每人再多收集顆,則收集數(shù)量低于顆的同學(xué)平均每人收集了顆,收集數(shù)量不低于顆的同學(xué)平均每人收集了顆,并且,該環(huán)保小組的人數(shù)介于至人.則該環(huán)保小組有__________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形OABC中,點(diǎn)B的坐標(biāo)是(4,4),點(diǎn)E、F分別在邊BC、BA上,OE=2.若∠EOF=45°,則F點(diǎn)的縱坐標(biāo)是( 。
A.1B.C.D.﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC為銳角,點(diǎn)M為射線AB上一動點(diǎn),連接CM,以點(diǎn)C為直角頂點(diǎn),以CM為直角邊在CM右側(cè)作等腰直角三角形CMN,連接NB.
(1)如圖1,圖2,若△ABC為等腰直角三角形,
問題初現(xiàn):①當(dāng)點(diǎn)M為線段AB上不與點(diǎn)A重合的一個動點(diǎn),則線段BN,AM之間的位置關(guān)系是 ,數(shù)量關(guān)系是 ;
深入探究:②當(dāng)點(diǎn)M在線段AB的延長線上時,判斷線段BN,AM之間的位置關(guān)系和數(shù)量關(guān)系,并說明理由;
(2)如圖3,∠ACB≠90°,若當(dāng)點(diǎn)M為線段AB上不與點(diǎn)A重合的一個動點(diǎn),MP⊥CM交線段BN于點(diǎn)P,且∠CBA=45°,BC=,當(dāng)BM= 時,BP的最大值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com