如圖,矩形OABC中,O是原點,OA=8,AB=6,則對角線AC和BO的交點H的坐標為_____________.
由矩形對角線性質(zhì)可得H到x軸的距離為AB一半,到y(tǒng)軸的距離為OA的一半,所以其坐標(4,3)。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

課題:探究能拼成正多邊形的三角形的面積計算公式.
小題1:如圖1,三角形的三邊長分別為a、b、c,∠A=60°,現(xiàn)將六個這樣的三角形(設(shè)面積為)拼成一個六邊形,由于大六邊形三個角都是∠B+∠C=120°,所以由a邊圍成了一個大的正六邊形,其面積可計算出為         ;由于所圍成的小六邊形的邊長都是       ,其面積為           ,由此可得                   .
小題2:如圖2, 三角形的三邊長分別為a、b、c,∠A=120°,試用這樣的三角形拼成一個正三角形(設(shè)面積為),先畫出這個正三角形,再推出的計算公式;
小題3:推廣:
對于三角形的三邊長分別為a、b、c,當∠A取什么值時,能拼成一個任意正邊形嗎?如果能,試寫出∠A和三角形的面積的表達式;如果不能,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知:AC⊥AB,BD⊥AB,且AC=BE,AE=BD,求證:△CDE是等腰直角三角形;

證明:∵AC⊥AB,BD⊥AB   ∴∠CAE=∠DBE=90°
∵AC= BE,AE=BD    ∴△ACE≌△BED
∴CE=DE且∠ACE=∠BED
∵∠ACE+∠AEC=90° ∴∠AEC+∠BED=90°
∴∠CED=90°        ∴△CED為等腰直角三角形
利用上題的解題思路解答下列問題:
在Rt△ABC中,∠C=90°,D,E分別為CB,CA延長線上的點,BE與AD的交點為P.
小題1:若BD=AC,AE=CD,在下圖中畫出符合題意的圖形,求出∠APE的度數(shù);
小題2:若AC=BD,CD=AE,則∠APE=__________°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,邊上一點,于點,于點,=,∠=∠,相交于點,下列結(jié)論:①;②;③;④△的面積等于四邊形的面積,其中正確的結(jié)論有
____________________(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若正方形的邊長為3,則螞蟻從其一個頂點爬行到相對頂點的最短距離為       .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,□ABCD中,點E是AD的中點,延長CE交BA的延長線于點F.
求證:AB=AF.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,一張矩形紙片沿BC折疊,頂點A落在點A′處,再過點A′折疊使折痕DE∥BC,若AB=4,AC=3,則△ADE的面積是   ★  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對角線AC于點F,E為垂足,連接DF.則∠CDF等于       

查看答案和解析>>

同步練習冊答案