【題目】如圖,點(diǎn)0 RtABC斜邊AB上的一點(diǎn),以OA 為半徑的☉OBC切于點(diǎn)D,與AC 交于點(diǎn)E,連接AD.

(1) 求證: AD平分∠BAC;

(2)若∠BAC= 60°,OA=4,求陰影部分的面積(結(jié)果保留π).

【答案】(1)見解析;(2)

【解析】試題分析:

(1)連接OD,則由已知易證OD∥AC,從而可得∠CAD=∠ODA,結(jié)合∠ODA=∠OAD,即可得到∠CAD=∠OAD,從而得到AD平分∠BAC;

(2)連接OE、DE,由已知易證△AOE是等邊三角形,由此可得∠ADE=∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,從而可得∠ADE=∠OAD,由此可得DE∥AO,從而可得S陰影=S扇形ODE,這樣只需根據(jù)已知條件求出扇形ODE的面積即可.

試題解析

(1)連接OD.

BC是⊙O的切線,D為切點(diǎn),

ODBC.

又∵ACBC,

ODAC,

∴∠ADO=CAD.

又∵OD=OA,

∴∠ADO=OAD,

∴∠CAD=OAD,即AD平分∠BAC.

(2)連接OE,ED.

∵∠BAC=60°,OE=OA,

∴△OAE為等邊三角形,

∴∠AOE=60°,

∴∠ADE=30°.

又∵,

∴∠ADE=OAD,

EDAO,

SAED=SOED,

∴陰影部分的面積 = S扇形ODE = .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BC是直徑,∠BAD=120°,AB=AD

1)求證:四邊形ABCD是等腰梯形;

2)已知AC=6,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m,AB和CD之間有一觀景池,小南在A點(diǎn)測(cè)得池中噴泉處E點(diǎn)的俯角為42°,在C點(diǎn)測(cè)得E點(diǎn)的俯角為45°(點(diǎn)B、E、D在同一直線上),求兩幢建筑物之間的距離BD.(結(jié)果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】東營市某中學(xué)校團(tuán)委開展“關(guān)愛殘疾兒童”愛心捐書活動(dòng),全校師生踴躍捐贈(zèng)各類書籍共3000本.為了了解各類書籍的分布情況,從中隨機(jī)抽取了部分書籍分四類進(jìn)行統(tǒng)計(jì):A.藝術(shù)類;B.文學(xué)類;C.科普類;D.其他,并將統(tǒng)計(jì)結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖.

(1)這次統(tǒng)計(jì)共抽取_____本書籍,扇形統(tǒng)計(jì)圖中的m=______,∠α的度數(shù)是_____

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)估計(jì)全校師生共捐贈(zèng)了多少本文學(xué)類書籍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有一RtABC,∠C90°A(1,3)、B(3,-1)、C(3,3),已知A1AC1是由ABC旋轉(zhuǎn)得到的.若點(diǎn)Qx軸上,點(diǎn)P在直線AB上,要使以QP、A1C1為頂點(diǎn)的四邊形是平行四邊形,滿足條件的點(diǎn)Q的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知∠ABC= ,D是直線AB上的一點(diǎn),AD=BC,連結(jié)DC.以DC為邊,在∠CDB的同側(cè)作∠CDE,使得∠CDE=∠ABC,并截取DE=CD,連結(jié)AE.

(1)求證:;并判斷AEBC的位置關(guān)系,說明理由;

(2)若將題目中的條件“∠ABC=900”改成“∠ABC=x0(0<x<180)”,

①結(jié)論“”還成立嗎?請(qǐng)說明理由;②試探索:當(dāng)的值為多少時(shí),直線AEBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解方程:

2)已知關(guān)于的方程 的解是正數(shù),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣3x+m(m為常數(shù))的圖象與x軸的一個(gè)交點(diǎn)為(1,0),則關(guān)于x的一元二次方程x2﹣3x+m=0的兩實(shí)數(shù)根是( 。

A. x1=1,x2=﹣1 B. x1=1,x2=2 C. x1=1,x2=0 D. x1=1,x2=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn) A(5,0)B(3,0)

(1)若點(diǎn) C y 軸上,且使得ABC 的面積等于 16,求點(diǎn) C 的坐標(biāo);

(2)若點(diǎn) C 在坐標(biāo)平面內(nèi),且使得ABC 的面積等于 16,這樣的點(diǎn) C 有多少個(gè)?你發(fā) 現(xiàn)了什么規(guī)律?

查看答案和解析>>

同步練習(xí)冊(cè)答案