【題目】我校準(zhǔn)備實(shí)行學(xué)案式教學(xué),需印刷若干份數(shù)學(xué)學(xué)案,印刷廠有甲、乙兩種收費(fèi)方式,除按印數(shù)收取印刷費(fèi)外,甲種方式還需收取制版費(fèi)而乙種不需要.兩種印刷方式的費(fèi)用(元)與印刷份數(shù)(份)之間的關(guān)系如圖所式.

1)求出甲、乙兩種收費(fèi)方式的函數(shù)關(guān)系式;

2)我校八年級(jí)每次需印刷100-450(含100450)份學(xué)案,選擇哪種印刷方式較合算.

【答案】1)甲收費(fèi)方式的函數(shù)關(guān)系式為:y10.1x6x0);乙收費(fèi)方式的函數(shù)關(guān)系式為y20.12xx0)(2)印制100300(含100)份學(xué)案,選擇乙種印刷方式較合算,印制300份學(xué)案,甲、乙兩種印刷方式都一樣合算,印制300450(含450)份學(xué)案,選擇甲種印刷方式較合算.

【解析】

1)設(shè)甲種收費(fèi)的函數(shù)關(guān)系式y1k1xb,乙種收費(fèi)的函數(shù)關(guān)系式是y2k2x,直接運(yùn)用待定系數(shù)法就可以求出結(jié)論;

2)由(1)的解析式分三種情況進(jìn)行討論,當(dāng)y1y2時(shí),當(dāng)y1y2時(shí),當(dāng)y1y2時(shí)分別求出x的取值范圍就可以得出選擇方式.

1)設(shè)甲種收費(fèi)的函數(shù)關(guān)系式y1k1xb,乙種收費(fèi)的函數(shù)關(guān)系式是y2k2x,由題意,得12100k2,

解得:,k20.12

y10.1x6x0),y20.12xx0);

∴甲收費(fèi)方式的函數(shù)關(guān)系式為:y10.1x6x0);乙收費(fèi)方式的函數(shù)關(guān)系式為y20.12xx0);

2)由題意,得

當(dāng)y1y2時(shí),0.1x60.12x,得x300;

當(dāng)y1y2時(shí),0.1x60.12x,得x300;

當(dāng)y1y2時(shí),0.1x60.12x,得x300

∴當(dāng)100x300時(shí),選擇乙種方式合算;

當(dāng)x300時(shí),甲、乙兩種方式一樣合算;

當(dāng)300x450時(shí),選擇甲種方式合算.

答:印制100300(含100)份學(xué)案,選擇乙種印刷方式較合算,印制300份學(xué)案,甲、乙兩種印刷方式都一樣合算,印制300450(含450)份學(xué)案,選擇甲種印刷方式較合算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中的每一個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫作格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫(huà)圖.

1)畫(huà)出一個(gè)周長(zhǎng)為24,面積為24的直角三角形;

2)畫(huà)出一個(gè)周長(zhǎng)為20,面積為24的菱形;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過(guò)點(diǎn)C(3,0),且與兩坐標(biāo)軸圍成的三角形的面積為3.

(1)求該一次函數(shù)的解析式;
(2)若反比例函數(shù)y=的圖象與該一次函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),且AC=2BC,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象分別與軸交于兩點(diǎn),正比例函數(shù)的圖象交于點(diǎn)

1)求的值及的解析式;

2)求的值;

3)一次函數(shù)的圖象為不能圍成三角形,直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 ABC,以AB為直徑的圓O分別交AC于D,交BC于E,連接ED,若ED=EC.
求證:AB=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤(pán)要對(duì)外銷售.某樓盤(pán)共23層,銷售價(jià)格如下:第八層樓房售價(jià)為4000元/米2 , 從第八層起每上升一層,每平方米的售價(jià)提高50元;反之,樓層每下降一層,每平方米的售價(jià)降低30元.已知該樓盤(pán)每套樓房面積均為120米2 , 若購(gòu)買者一次性付清所有房款,開(kāi)發(fā)商有兩種優(yōu)惠方案:
方案一:降價(jià)8%,另外每套樓房贈(zèng)送a元裝修基金;
方案二:降價(jià)l0%,沒(méi)有其他贈(zèng)送.
(1)請(qǐng)寫(xiě)出售價(jià)y(元/米2)與樓層x( ,x取整數(shù))之間的函數(shù)關(guān)系式;
(2)老王要購(gòu)買第十六層的一套樓房,若他一次性付清購(gòu)房款,請(qǐng)幫他計(jì)算哪種優(yōu)惠方案更加合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)六七年級(jí)有350名同學(xué)去春游,已知2A型車和1B型車可以載學(xué)生100人;1A型車和2B型車可以載學(xué)生110人.

1A、B型車每輛可分別載學(xué)生多少人?

2)若租一輛A需要100元,一輛B120元,請(qǐng)你設(shè)計(jì)租車方案,使得恰好運(yùn)送完學(xué)生并且租車費(fèi)用最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在梯形中,,點(diǎn)在直線上,聯(lián)結(jié),過(guò)點(diǎn)的垂線,交直線與點(diǎn),

1)如圖1,已知,:求證:;

2)已知:,

當(dāng)點(diǎn)在線段上,求證:;

當(dāng)點(diǎn)在射線上,①中的結(jié)論是否成立?如果成立,請(qǐng)寫(xiě)出證明過(guò)程;如果不成立,簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了改善辦學(xué)條件,計(jì)劃購(gòu)置一電子白板和一批筆記本電腦,經(jīng)投標(biāo),購(gòu)買一塊電子白板比買三臺(tái)筆記本電腦多3000元,購(gòu)買4塊電子白板和5臺(tái)筆記本電腦共需80000.

(1)求購(gòu)買一塊電子白板和一臺(tái)筆記本電腦各需多少元?

(2)根據(jù)該校實(shí)際情況需購(gòu)買電子白板和筆記本電腦的總數(shù)為396臺(tái),要求購(gòu)買的總費(fèi)用不超過(guò)2700000元,并購(gòu)買筆記本電腦的臺(tái)數(shù)不超過(guò)購(gòu)買電子白板數(shù)量的3倍,該校有哪幾種購(gòu)買方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案