【題目】已知AB是圓錐(如圖1)底面的直徑,P是圓錐的頂點(diǎn),此圓錐的側(cè)面展開圖如圖2所示.一只螞蟻從A點(diǎn)出發(fā),沿著圓錐側(cè)面經(jīng)過PB上一點(diǎn),最后回到A點(diǎn).若此螞蟻所走的路線最短,那么M,N,S,T(M,N,S,T均在PB上)四個點(diǎn)中,它最有可能經(jīng)過的點(diǎn)是(

A.M
B.N
C.S
D.T

【答案】B
【解析】解:如圖所示:根據(jù)圓錐側(cè)面展開圖,此螞蟻所走的路線最短,那么M,N,S,T(M,N,S,T均在PB上)四個點(diǎn)中,它最有可能經(jīng)過的點(diǎn)是N,

故選B.
【考點(diǎn)精析】關(guān)于本題考查的幾何體的展開圖和線段的基本性質(zhì),需要了解沿多面體的棱將多面體剪開成平面圖形,若干個平面圖形也可以圍成一個多面體;同一個多面體沿不同的棱剪開,得到的平面展開圖是不一樣的,就是說:同一個立體圖形可以有多種不同的展開圖;線段公理:所有連接兩點(diǎn)的線中,線段最短.也可簡單說成:兩點(diǎn)之間線段最短;連接兩點(diǎn)的線段的長度,叫做這兩點(diǎn)的距離;線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,△ABC中,AC=BC,∠ACB=90°,D為AB的中點(diǎn),若E在直線AC上任意一點(diǎn),DF⊥DE,交直線BC于F點(diǎn).G為EF的中點(diǎn),延長CG交AB于點(diǎn)H.
(1)若E在邊AC上. ①試說明DE=DF;
②試說明CG=GH;
(2)若AE=3,CH=5.求邊AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:2x2﹣8y2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=﹣x2+2x2圖象上兩點(diǎn)A2,y1),Ba,y2),其中a2,則y1y2的大小關(guān)系是_____.(填“<”,“>”或“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論:①CE=CF;②∠AEB=75°③BE+DF=EF;④CE= ,其中正確的結(jié)論的個數(shù)為( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別在線段AD及其延長線上,且DE=DF,給出下列條件:①BE⊥EC;②AB=AC;③BF∥EC;從中選擇一個條件使四邊形BECF是菱形,你認(rèn)為這個條件是(只填寫序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解方程4x2(x+1)2=0;

(2)請運(yùn)用解一元二次方程的思想方法解方程x3x=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:x2yy_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠承接了一批紙箱加工任務(wù),用如圖1所示的長方形和正方形紙板(長方形的寬與正方形的邊長相等)加工成如圖所示的豎式與橫式兩種無蓋的長方形紙箱.(加工時接縫材料不計)

(1)若該廠購進(jìn)正方形紙板1000張,長方形紙板2000張.問豎式紙盒,橫式紙盒各加工多少個,恰好能將購進(jìn)的紙板全部用完;
(2)該工廠某一天使用的材料清單上顯示,這天一共使用正方形紙板50張,長方形紙板a張,全部加工成上述兩種紙盒,且120<a<136,試求在這一天加工兩種紙盒時,a的所有可能值.

查看答案和解析>>

同步練習(xí)冊答案