【題目】在一次向貧困山區(qū)學生愛心助學捐款活動中,某校學生人人拿出自己的零花錢踴躍捐款,學生捐款額有5元、10元、15元、20元四種情況,根據(jù)隨機抽樣統(tǒng)計數(shù)據(jù)繪制了圖①和圖②兩幅尚不完整的統(tǒng)計圖.請你根據(jù)圖中信息解答下列問題:

1)求出本次抽樣的學生人數(shù)并求捐款額為5元的學生人數(shù)占抽樣人數(shù)的百分比?

2)請你將圖②的條形統(tǒng)計圖補充完整;

3)若該校九年級人數(shù)為600人,請你估計該校九年級一共捐款多少元?

【答案】(1)本次抽樣的學生人數(shù)為50人,捐款額為5元的學生人數(shù)占抽樣人數(shù)的百分比為12%;(2)見解析;(3)該校九年級600人,一共捐款7800

【解析】

15元的人數(shù)除以占比便是總人數(shù),用捐款5元的人數(shù)除以總人數(shù)便是占比了.

總人數(shù)減去5元、15元、20元的人數(shù)便是10元的人數(shù),在條形圖中畫出來即可.

計算出加權平均數(shù)然后乘以600便可得到答案.

116÷32%50人,6÷5012%

答:本次抽樣的學生人數(shù)為50人,捐款額為5元的學生人數(shù)占抽樣人數(shù)的百分比為12%

2506161018人,補全條形統(tǒng)計圖如圖所示:

3×6007800元,

答:該校九年級600人,一共捐款7800元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】對于拋物線,下列說法錯誤的是( )

A.若頂點在x軸下方,則一元二次方程有兩個不相等的實數(shù)根

B.若拋物線經過原點,則一元二次方程必有一根為0

C.,則拋物線的對稱軸必在y軸的左側

D.,則一元二次方程,必有一根為-2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,有下列結論:①abc0;②2a+b0;③若m為任意實數(shù),則a+bam2+bm;④ab+c0;⑤若ax12+bx1ax22+bx2,且x1≠x2,則x1+x22.其中,正確結論的個數(shù)為( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸相交于點A(3,0),與軸相交于點

1)求的值和點的坐標;

2)點D(x,y)是拋物線上一點,若S△ABD= S△ABC,求點的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是邊長為3的等邊三角形,BDC是等腰三角形,且BDC=120°.以D為頂點作一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則AMN的周長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,熒光屏上的甲、乙兩個光斑(可看作點)分別從相距8cmA,B兩點同時開始沿線段AB運動,運動工程中甲光斑與點A的距離S1(cm)與時間t(s)的函數(shù)關系圖象如圖2,乙光斑與點B的距離S2(cm)與時間t(s)的函數(shù)關系圖象如圖3,已知甲光斑全程的平均速度為1.5cm/s,且兩圖象中P1O1Q1P2Q2O2,下列敘述正確的是( 。

A. 甲光斑從點A到點B的運動速度是從點B到點A的運動速度的4

B. 乙光斑從點AB的運動速度小于1.5cm/s

C. 甲乙兩光斑全程的平均速度一樣

D. 甲乙兩光斑在運動過程中共相遇3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以直線為對稱軸的拋物線與直線交于,兩點,與軸交于,直線軸交于點.

(1)求拋物線的函數(shù)表達式;

(2)設直線與拋物線的對稱軸的交點為,是拋物線上位于對稱軸右側的一點,若,且的面積相等,求點的坐標;

(3)若在軸上有且只有一點,使,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+cx軸交于BC兩點(點B在點C的左側),與y軸交于點A,拋物線的頂點為D,B(﹣30),A0,

1)求拋物線解析式及D點坐標;

2)如圖1,P為線段OB上(不與O、B重舍)一動點,過點Py軸的平行線交線段AB于點M,交拋物線于點N,點NNKBABA于點K,當△MNK與△MPB的面積相等時,在X軸上找一動點Q,使得CQ+QN最小時,求點Q的坐標及CQ+QN最小值;

3)如圖2,在(2)的條件下,將△ODN沿射線DN平移,平移后的對應三角形為△O′D′N′,將△AOC繞點O逆時針旋轉到A1OC1的位置,且點C1恰好落在AC上,△A1D′N′是否能為等腰三角形,若能求出N′的坐標,若不能,請說明理由.

查看答案和解析>>

同步練習冊答案