【題目】已知,如圖,P為△ABC中線AD上一點,AP:PD=2:1,延長BP、CP分別交AC、AB于點E、F,EF交AD于點Q.(1)PQ=EQ;(2)FP:PC=EC:AE;(3)FQ:BD=PQ:PD;(4)S△FPQ:S△DCP=SPEF:S△PBC.上述結(jié)論中,正確的有_________.
【答案】(3)(4)
【解析】解:延長PD到M,使DM=PD,連接BM、CM,∵AD是中線,∴BD=CD,
∴四邊形BPCM是平行四邊形,∴BP∥MC,CP∥BM,即PE∥MC,PF∥BM,
∴AE:AC=AP:AM,AF:AB=AP:AM,∴AF:AB=AE:AC,
∴EF∥BC;∴△AFQ∽△ABD,△AEQ∽△ACD,∴FQ:BD=EQ:CD,
∴FQ=EQ,而PQ與EQ不一定相等,故(1)錯誤;
∵△△PEF∽△PBC,△AEF∽△ACB,∴PF:PC=EF:BC,EF:BC=AE:AC,
∴PF:PC=AE:AC,故(2)錯誤;∵△PFQ∽△PCD∴FQ:CD=PQ:PD,
∴FQ:BD=PQ:PD;故(3)正確;∵EF∥BC,∴S△FPQ:S△DCP=()2,S△PEF:S△PBC=()2,∴S△FPQ:S△DCP=SPEF:S△PBC.故(4)正確.
故答案為:(3)(4).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺進價分別為2000元、1700元的A、B兩種型號的凈水器,下表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 18000元 |
第二周 | 4臺 | 10臺 | 31000元 |
(1)求A,B兩種型號的凈水器的銷售單價;
(2)若電器公司準(zhǔn)備用不多于54000元的金額在采購這兩種型號的凈水器共30臺,求A種型號的凈水器最多能采購多少臺?
(3)在(2)的條件下,公司銷售完這30臺凈水器能否實現(xiàn)利潤為12800元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某周日上午8:00小宇從家出發(fā),乘車1小時到達(dá)某活動中心參加實踐活動.11:00時他在活動中心接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來活動中心時的路線,以5千米/小時的平均速度快步返回.同時,爸爸從家沿同一路線開車接他,在距家20千米處接上了小宇,立即保持原來的車速原路返回.設(shè)小宇離家x(小時)后,到達(dá)離家y(千米)的地方,圖中折線OABCD表示y與x之間的函數(shù)關(guān)系.
(1)活動中心與小宇家相距 千米,小宇在活動中心活動時間為 小時,他從活動中心返家時,步行用了 小時;
(2)求線段BC所表示的y(千米)與x(小時)之間的函數(shù)關(guān)系式(不必寫出x所表示的范圍);
(3)根據(jù)上述情況(不考慮其他因素),請判斷小宇是否能在12:00前回到家,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司招聘職員,對甲、乙兩位候選人進行了面試和筆試,面試中包括形體和口才,筆試中包括專業(yè)水平和創(chuàng)新能力考察,他們的成績(百分制)如下表:
候選人 | 面試 | 筆試 | ||
形體 | 口才 | 專業(yè)水平 | 創(chuàng)新能力 | |
甲 | 86 | 90 | 96 | 92 |
乙 | 92 | 88 | 95 | 93 |
若公司根據(jù)經(jīng)營性質(zhì)和崗位要求認(rèn)為:形體、口才、專業(yè)水平、創(chuàng)新能力按照4:6:5:5的比確定,請計算甲、乙兩人各自的平均成績,看看誰將被錄。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點,點P在線段AD上,過P作PF⊥AE于F,設(shè)PA=x.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點P在線段AD上運動時,設(shè)PA=x,是否存在實數(shù)x,使得以點P,F,E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;
(3)探究:當(dāng)以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點時,請直接寫出x滿足的條件: .
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)與的圖象如圖所示,則下列結(jié)論①k<0;②a>0;③不等式x+a<kx+b的解集是x<3;④ab=3k3中,正確的個數(shù)是()
A. 3個B. 2個C. 1個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把四張大小相同的長方形卡片(如圖①)按圖②、圖③兩種放法放在一個底面為長方形(長為,寬為)的盒底上,底面未被卡片覆蓋的部分用陰影表示,若記圖②中陰影部分的周長為,圖③中陰影部分的周長為,則___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系xOy中,點A(-4,0),點B在直線y=x+2上.當(dāng)A、B兩點間的距離最小時,點B的坐標(biāo)是( )
A. (,) B. (,) C. (-3,-1) D. (-3,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△的頂點、在坐標(biāo)軸上,點的坐標(biāo)是(2,2).將△ABC沿軸向左平移得到△A1B1C1,點落在函數(shù)y=-.如果此時四邊形的面積等于,那么點的坐標(biāo)是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com