【題目】已知:如圖,在四邊形ABCD中,AD=BC,E、F分別是DC、AB邊的中點(diǎn),FE的延長(zhǎng)線分別與AD、BC的延長(zhǎng)線交于H、G點(diǎn).求證:∠AHF=∠BGF.
【答案】證明見(jiàn)解析.
【解析】試題分析:連接AC,取AC中點(diǎn)為M,連接ME、MF,根據(jù)中位線定理證明EM=MF,從而可得∠MEF=∠MFE,根據(jù)平行線同位角相等,證明∠MEF=∠AHF,∠MFE=∠BGF,可以求證∠AHF=∠BGF.
試題解析:連接AC,取AC中點(diǎn)為M,連接ME、MF,如圖:
∵E是CD的中點(diǎn),M為AC中點(diǎn),
∴EM∥AD,且EM=AD,
∵M(jìn)是AC的中點(diǎn), F是AB的中點(diǎn),
∴MF∥BC,且MF=BC,
∵AD=BC,
∴EM=MF,∴∠MEF=∠MFE,
∵EM∥AH,∴∠MEF=∠AHF,
∵FM∥BG,∴∠MFE=∠BGF,
∴∠AHF=∠BGF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是正方形.
(1)如圖(1)所示,點(diǎn)G是BC邊上任意一點(diǎn)(不與B,C兩點(diǎn)重合),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E.求證△ABF≌△DAE;
(2)在(1)中,線段EF與AF,BF的等量關(guān)系是____;(不需證明,直接寫出結(jié)論即可)
(3)如圖(2)所示,若點(diǎn)G是CD邊上任意一點(diǎn)(不與C,D兩點(diǎn)重合),作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,那么圖中的全等三角形是____,線段EF與AF,BF的等量關(guān)系是____.(不需證明,直接寫出結(jié)論即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園手機(jī)”現(xiàn)象越來(lái)越受到社會(huì)的關(guān)注.“寒假”期間,某校小記者隨機(jī)調(diào)查了某地區(qū)若干名學(xué)生和家長(zhǎng)對(duì)中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:
(1)求這次調(diào)查的家長(zhǎng)人數(shù),并補(bǔ)全圖1;
(2)求圖2中表示家長(zhǎng)“贊成”的圓心角的度數(shù);
(3)已知某地區(qū)共6500名家長(zhǎng),估計(jì)其中反對(duì)中學(xué)生帶手機(jī)的大約有多少名家長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一張長(zhǎng)方形紙片分別沿著EP,FP對(duì)折,使B落在B′,C落在C′.
(1)若點(diǎn)P,B′,C′在同一直線上(圖1),求兩條折痕的夾角∠EPF的度數(shù);
(2)若點(diǎn)P,B′,C′不在同一直線上(圖2),且∠B′PC′=10°,求∠EPF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,把一塊含30°的直角三角板ABC的BC邊放置于長(zhǎng)方形直尺DEFG的EF邊上.
(1)填空:∠1= °,∠2= °;
(2)現(xiàn)把三角板繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)n°.
①如圖2,當(dāng)0<n<90,且點(diǎn)C恰好落在DG邊上時(shí),求∠1、∠2的度數(shù)(結(jié)果用含n的代數(shù)式表示);
②當(dāng)0<n<360時(shí),是否會(huì)存在三角板某一邊所在的直線與直尺(有四條邊)某一邊所在的直線垂直?如果存在,直接寫出所有n的值和對(duì)應(yīng)的那兩條垂線;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道對(duì)于一個(gè)圖形,通過(guò)不同的方法計(jì)算圖形的面積可以得到一個(gè)數(shù)學(xué)等式.
例如:由圖1可得到(a+b)=a+2ab+b.
圖1 圖2 圖3
(1)寫出由圖2所表示的數(shù)學(xué)等式:_____________________;寫出由圖3所表示的數(shù)學(xué)等式:_____________________;
(2)利用上述結(jié)論,解決下面問(wèn)題:已知a+b+c=11,bc+ac+ab=38,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料后解決問(wèn)題:
小明遇到下面一個(gè)問(wèn)題:
計(jì)算(2+1)(22+1)(24+1)(28+1).
經(jīng)過(guò)觀察,小明發(fā)現(xiàn)如果將原式進(jìn)行適當(dāng)?shù)淖冃魏罂梢猿霈F(xiàn)特殊的結(jié)構(gòu),進(jìn)而可以應(yīng)用平方差公式解決問(wèn)題,具體解法如下:(2+1)(22+1)(24+1)(28+1)
=(2+1)(2﹣1)(22+1)(24+1)(28+1)
=(22﹣1)(22+1)(24+1)(28+1)
=(24﹣1)(24+1)(28+1)
=(28﹣1)(28+1)
=216﹣1
請(qǐng)你根據(jù)小明解決問(wèn)題的方法,試著解決以下的問(wèn)題:
(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____.
(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____.
(3)化簡(jiǎn):(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1中所示程序進(jìn)行計(jì)算:(1)若輸入-3,求y的值;(2)若第一次輸入x,輸出的結(jié)果記為y1,第二次輸入(1-x),計(jì)算的結(jié)果記為y2,要使y1>y2,你怎樣選擇x的值,并把x值的范圍在圖2中的數(shù)軸上表示出來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,點(diǎn)D、E分別在邊AC、BC上(不與點(diǎn)A、B、C重合),點(diǎn)P是直線AB上的任意一點(diǎn)(不與點(diǎn)A、B重合).設(shè)∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.
(1)如圖,當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng),且n=90°時(shí)
①若PD∥BC,PE∥AC,則m=_____;
②若m=50°,求x+y的值.
(2)當(dāng)點(diǎn)P在直線AB上運(yùn)動(dòng)時(shí),直接寫出x、y、m、n之間的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com