【題目】某高校學生會發(fā)現(xiàn)同學們就餐時剩余飯菜較多,浪費嚴重,于是準備在校內(nèi)倡導“光盤行動”,讓同學們珍惜糧食,為了讓同學們理解這次活動的重要性,校學生會在某天午餐后,隨機調(diào)查了部分同學就餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.
(1)這次被調(diào)查的同學共有名;
(2)補全條形統(tǒng)計圖;
(3)計算在扇形統(tǒng)計圖中剩大量飯菜所對應扇形圓心角的度數(shù);
(4)校學生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學生一餐浪費的食物可以供200人用一餐.據(jù)此估算,該校20000名學生一餐浪費的食物可供多少人食用一餐?

【答案】
(1)解:被調(diào)查的同學的人數(shù)是400÷40%=1000(名);
(2)解:剩少量的人數(shù)是1000﹣400﹣250﹣150=200(名),


(3)解:在扇形統(tǒng)計圖中剩大量飯菜所對應扇形圓心角的度數(shù)是:

360°× =54°;


(4)解: ×200=4000(人).

答:校20000名學生一餐浪費的食物可供4000人食用一餐.


【解析】(1)根據(jù)沒有剩飯的人數(shù)是400人,所占的百分比是40%,據(jù)此即可求得調(diào)查的總?cè)藬?shù);(2)利用(1)中求得結(jié)果減去其它組的人數(shù)即可求得剩少量飯的人數(shù),從而補全直方圖;(3)利用360°乘以對應的比例即可求解;(4)利用20000除以調(diào)查的總?cè)藬?shù),然后乘以200即可求解.
【考點精析】解答此題的關(guān)鍵在于理解扇形統(tǒng)計圖的相關(guān)知識,掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況,以及對條形統(tǒng)計圖的理解,了解能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是矩形,cot∠ADB= ,AB=16.點E在射線BC上,點F在線段BD上,且∠DEF=∠ADB.

(1)求線段BD的長;
(2)設(shè)BE=x,△DEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出函數(shù)定義域;
(3)當△DEF為等腰三角形時,求線段BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,M為CD中點,分別以B、M為圓心,以BC長、MC長為半徑畫弧,兩弧相交于點P,若∠PBC=70°,則∠MPC的度數(shù)為(
A.55°
B.40°
C.35°
D.20°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=k1x+b與反比例函數(shù)y= 的圖象交于點A(﹣3,2)和點B(1,m),連接BO并延長與反比例函數(shù)y= 的圖象交于點C.
(1)求一次函數(shù)y=k1x+b和反比例函數(shù)y= 的表達式;
(2)是否在雙曲線y= 上存在一點D,使得以點A、B、D、C為頂點的四邊形成為平行四邊形?若存在,請直接寫出點D的坐標,并求出該平行四邊形的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩工程隊分別同時開挖兩條600米長的管道,所挖管道長度y(米)與挖掘時間x(天)之間的關(guān)系如圖所示,則下列說法中: ①甲隊每天挖100米;
②乙隊開挖兩天后,每天挖50米;
③甲隊比乙隊提前3天完成任務;
④當x=2或6時,甲乙兩隊所挖管道長度都相差100米.
正確的有 . (在橫線上填寫正確的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,經(jīng)過原點的拋物線y=﹣x2+2mx與x軸的另一個交點為A.點P在一次函數(shù)y=2x﹣2m的圖象上,PH⊥x軸于H,直線AP交y軸于點C,點P的橫坐標為1.(點C不與點O重合)
(1)如圖1,當m=﹣1時,求點P的坐標.
(2)如圖2,當 時,問m為何值時
(3)是否存在m,使 ?若存在,求出所有滿足要求的m的值,并定出相對應的點P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y= (a為常數(shù))的圖象經(jīng)過點B(﹣4,2).

(1)求a的值;
(2)如圖,過點B作直線AB與函數(shù)y= 的圖象交于點A,與x軸交于點C,且AB=3BC,過點A作直線AF⊥AB,交x軸于點F,求線段AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,點D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CF,連接EF.

(1)補充完成圖形;
(2)若EF∥CD,求證:∠BDC=90°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點B(4,2),BA⊥x軸于A.

(1)畫出將△OAB繞原點旋轉(zhuǎn)180°后所得的△OA1B1 , 并寫出點B1的坐標;
(2)將△OAB平移得到△O2A2B2 , 點A的對應點是A2(2,﹣4),點B的對應點B2在坐標系中畫出△O2A2B2;并寫出B2的坐標;
(3)△OA1B1與△O2A2B2成中心對稱嗎?若是,請直接寫出對稱中心點P的坐標.

查看答案和解析>>

同步練習冊答案