【題目】已知△ABC中,∠BAC=100°.
(1)若∠ABC和∠ACB的角平分線交于點O,如圖1所示,試求∠BOC的大;
(2)若∠ABC和∠ACB的三等分線(即將一個角平均分成三等分的射線)相交于O,O1,如圖2所示,試求∠BOC的大;
(3)如此類推,若∠ABC和∠ACB的n等分線自下而上依次相交于O,O1,O2…,如圖3所示,試探求∠BOC的大小與n的關系,并判斷當∠BOC=170°時,是幾等分線的交線所成的角.
【答案】(1);(2) ;(3)∠BOC=180°-,八等分線.
【解析】
根據(jù)三角形內(nèi)角和定理先求得∠ABC+∠ACB的度數(shù),
(1)根據(jù)角平分線的定義可求得∠OBC+∠OCB的度數(shù),從而利用三角形內(nèi)角和定理求∠BOC的度數(shù);
(2)根據(jù)三等分線的定義可求得∠OBC+∠OCB的度數(shù),從而利用三角形內(nèi)角和定理求∠BOC的度數(shù);
(3)根據(jù)n等分線的定義可表示出∠OBC+∠OCB的度數(shù),從而利用三角形內(nèi)角和定理表示出∠BOC的度數(shù),然后將∠BOC=170°代入求出n的值即可.
解:∵∠BAC=100°,
∴∠ABC+∠ACB=180°-100°=80°,
(1)∵點O是∠ABC和∠ACB的角平分線的交點,
∴∠OBC+∠OCB=∠ABC +∠ACB =(∠ABC+∠ACB)=40°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-40°=140°;
(2)∵點O是∠ABC和∠ACB的三等分線的交點,
∴∠OBC+∠OCB=∠ABC +∠ACB =(∠ABC+∠ACB)=,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-=;
(3)∵點O是∠ABC和∠ACB的n等分線的交點,
∴∠OBC+∠OCB=∠ABC +∠ACB =(∠ABC+∠ACB)=,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-,
當∠BOC=170°時,即170°=180°-,
解得:n=8,即是八等分線的交線所成的角.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為正六邊形ABCDEF的中心,點M為AF中點,以點O為圓心,以OM的長為半徑畫弧得到扇形MON,點N在BC上;以點E為圓心,以DE的長為半徑畫弧得到扇形DEF,把扇形MON的兩條半徑OM,ON重合,圍成圓錐,將此圓錐的底面半徑記為r1;將扇形DEF以同樣方法圍成的圓錐的底面半徑記為r2,則r1:r2=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為了鼓勵居民節(jié)約用電,采用分段計費的方法按月計算每戶家庭的電費,分兩檔收費:第一檔是當月用電量不超過240度時實行“基礎電價”;第二檔是當用電量超過240度時,其中的240度仍按照“基礎電價”計費,超過的部分按照“提高電價”收費.設每個家庭月用電量為x 度時,應交電費為y 元.具體收費情況如折線圖所示,請根據(jù)圖象回答下列問題:
(1)“基礎電價”是____________元 度;
(2)求出當x>240 時,y與x的函數(shù)表達式;
(3)若紫豪家六月份繳納電費132元,求紫豪家這個月用電量為多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,B、A、F三點在同一直線上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.
請你用其中兩個作為條件,另一個作為結(jié)論,構造一個真命題,并證明.
己知:______________________________________________________.
求證:______________________________________________________.
證明:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司計劃購買A,B兩種型號的機器人搬運材料.已知A型機器人比B型機器人每小時多搬運30kg材料,且A型機器人搬運1000kg材料所用的時間與B型機器人搬運800kg材料所用的時間相同.
(1)求A,B兩種型號的機器人每小時分別搬運多少材料;
(2)該公司計劃采購A,B兩種型號的機器人共20臺,要求每小時搬運材料不得少于2800kg,則至少購進A型機器人多少臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,半徑為1的的圓心A在拋物線y=(x-3)2-1上,AB//x軸交 于點B(點B在點A的右側(cè)),當點A在拋物線上運動時,點B隨之運動得到的圖象的函數(shù)表達式為( )
A. y=(x-4)2-1 B. y=(x-3)2 C. y=(x-2)2-1 D. y=(x-3)2-2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,設一質(zhì)點M自P0(1,0)處向上運動1個單位至P1(1,1),然后向左運動2個單位至P2處,再向下運動3個單位至P3處,再向右運動4個單位至P4處,再向上運動5個單位至P5處,……如此繼續(xù)運動下去.設Pn(xn,yn),n=1、2、3、……,則x1+x2+……+x2014+x2015的值為( )
A. 1 B. 3 C. -1 D. 2015
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填空并解答相關問題:
(1)觀察下列數(shù)1,3,9,27,81…,發(fā)現(xiàn)從第二項開始,每一項除以前一項的結(jié)果是一個常數(shù),這個常數(shù)是________;根據(jù)此規(guī)律,如果an (n為正整數(shù))表示這列數(shù)的第n項,那么an =__________;
你能求出它們的和嗎?
計算方法:如果要求1+3+32+33+…+320的值,
可令S=1+3+32+33+…+320①
將①式兩邊同乘以3,得3S=3+32+33+…+320+321②
由②式左右兩邊分別減去①式左右兩邊,
得3S-S=(3+32+33+…+320+321)-(1+3+32+33+…+320),
即2S=321-1,兩邊同時除以2得.
(2)你能用類比的思想求1+6+62+63+…+6100的值嗎?寫出求解過程.
(3)你能用類比的思想求1+m+m2+m3+…+mn(其中mn≠0,m≠1)的值嗎?寫出求解過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com