【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),則花園面積S的最大值為_____m2

【答案】195

【解析】

分析題意, 設(shè)AB=xm,BC=(28-x)m,根據(jù)題意可得S=x(28-x)= =,接下來(lái)利用二次函數(shù)求最值的方法即可得到本題答案.

解:設(shè)AB=xm, BC=(28-x)m,

由題意可得出: S=x(28-x)==

P處有一棵樹與墻CD, AD的距離分別是15m6m

6x28,1528-x28

6x13

x=13時(shí), S取到最大值為: S最大值==195.

故花園面積S的最大值為195平方米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(2,﹣1),圖象與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn).

(1)求拋物線的解析式;

(2)設(shè)拋物線對(duì)稱軸與直線BC交于點(diǎn)D,連接AC、AD,求△ACD的面積;

(3)點(diǎn)E為直線BC上的任意一點(diǎn),過(guò)點(diǎn)Ex軸的垂線與拋物線交于點(diǎn)F,問(wèn)是否存在點(diǎn)E使△DEF為直角三角形?若存在,求出點(diǎn)E坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某小區(qū)有一塊長(zhǎng)為30 m,寬為24 m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480 m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為________m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)準(zhǔn)備在甲乙兩位射箭愛好者中選出一人參加集訓(xùn),兩人各射了5箭,小宇根據(jù)他們的成績(jī)(單位:環(huán))繪制了如下尚不完整的統(tǒng)計(jì)表:

1

2

3

4

5

甲成績(jī)

9

4

7

a

6

乙成績(jī)

7

5

7

4

7

1)若甲成績(jī)的平均數(shù)為6環(huán),求a的值;

2)若甲成績(jī)的方差為3.6,請(qǐng)計(jì)算乙成績(jī)的方差并說(shuō)明誰(shuí)的成績(jī)更穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,于點(diǎn),于點(diǎn),交于點(diǎn),連接.下列結(jié)論:①;②圖中共有8對(duì)相似三角形;③.其中正確的是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,⊙O的直徑AB10cm,弦AC6cm,∠ACB的平分線交⊙OD,求BC,AD,BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,張老師在黑板上畫出了一個(gè),其中,讓同學(xué)們進(jìn)行探究.

1)探究一:

如圖2,小明以為邊在內(nèi)部作等邊,連接,請(qǐng)直接寫出的度數(shù)_____________

2)探究二:

如圖3,小彬在(1)的條件下,又以為邊作等邊,連接.判斷的數(shù)量關(guān)系;并說(shuō)明理由;

3)探究三:

如圖3,小聰在(2)的條件下,連接,若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,圖形G上點(diǎn)P(x,y)的縱坐標(biāo)y與其橫坐標(biāo)x的差yx稱為P點(diǎn)的“坐標(biāo)差”,而圖形G上所有點(diǎn)的“坐標(biāo)差”中的最大值稱為圖形G的“特征值”

(1)①點(diǎn)A(1,3) 的“坐標(biāo)差”為

②拋物線y=x2+3x+3的“特征值”為 。

(2)某二次函數(shù)y=x2+bx+c(c≠0) 的“特征值”為1,點(diǎn)B(m,0)與點(diǎn)C分別是此二次函數(shù)的圖象與x軸和y軸的交點(diǎn),且點(diǎn)B與點(diǎn)C的“坐標(biāo)差”相等。

①直接寫出m= (用含c的式子表示)

②求此二次函數(shù)的表達(dá)式。

(3)如圖,在平面直角坐標(biāo)系xOy中,以M(2,3)為圓心,2為半徑的圓與直線y=x相交于點(diǎn)D、E請(qǐng)直接寫出⊙M的“特征值”為 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD與四邊形A′B′C′D′是位似圖形,且它們的對(duì)應(yīng)邊的比為3:4,則四邊形ABCD與四邊形A′B′C′D′的周長(zhǎng)之比為______,面積之比為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案