如圖有下面三個判斷:①∠A=∠F,②∠C=∠D,③∠1=∠2,請你用其中兩個作為條件,余下一個作為結(jié)論,編一道證明題并寫出證明過程.

證明見解析.

解析試題分析:根據(jù)平行線的判定推出DF∥AC,推出∠C=∠DBA,推出DB∥CE,根據(jù)平行線的性質(zhì)和對頂角的性質(zhì)推出即可.
試題解析:已知:如圖:∠A=∠F,∠C=∠D,
求證:∠1=∠2.
證明:∵∠A=∠F,
∴DF∥AC,
∴∠D=∠DBA,
∵∠D=∠C,
∴∠C=∠DBA,
∴DB∥CE,
∴∠1=∠AMC,
∵∠2=∠AMC,
∴∠1=∠2.
考點(diǎn):平行線的判定與性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,C是AE上一點(diǎn),∠B=∠DAE,BC∥DE,AC=DE.求證:AB=DA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,以∠AOB的頂點(diǎn)O為圓心,適當(dāng)長為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于CD的長為半徑畫弧,兩弧在∠AOB內(nèi)部交于點(diǎn)E,過點(diǎn)E作射線OE,連接CD.則下列說法錯誤的是

A.射線OE是∠AOB的平分線
B.△COD是等腰三角形
C.C、D兩點(diǎn)關(guān)于OE所在直線對稱
D.O、E兩點(diǎn)關(guān)于CD所在直線對稱

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

填寫推理理由(1×10=10分)
如圖,已知AB∥CD ,∠1=∠2,∠3=∠4,試說明AD∥BE
解:∵AB∥CD(已知)
∴∠4=∠_____(               )
∵∠3=∠4(已知)
∴∠3=∠_____(               )
∵∠1=∠2(已知)  
∴∠ CAE+     =∠CAE+       
即 ∠_____  =∠_____       
∴∠3=∠_____
∴AD∥BE(                    )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

小明在學(xué)習(xí)三角形知識時,發(fā)現(xiàn)如下三個有趣的結(jié)論:在Rt△ABC中,∠A=90°,BD平分∠ABC,M為直線AC上一點(diǎn),ME⊥BC,垂足為E,∠AME的平分線交直線AB于點(diǎn)F.
(1)如圖①,M為邊AC上一點(diǎn),則BD、MF的位置關(guān)系是             ;
如圖②,M為邊AC反向延長線上一點(diǎn),則BD、MF的位置關(guān)系是            ;
如圖③,M為邊AC延長線上一點(diǎn),則BD、MF的位置關(guān)系是               ;
(2)請就圖①、圖②、或圖③中的一種情況,給出證明.
我選圖     來證明.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知線段AB=8 cm,在直線AB上有一點(diǎn)C,且BC=4 cm,點(diǎn)M是線段AC的中點(diǎn), 求線段AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線AB、CD相交于點(diǎn)O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,線段,點(diǎn)是線段上任意一點(diǎn),點(diǎn)是線段的中點(diǎn),點(diǎn)是線段的中點(diǎn),求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:計(jì)算題

如圖,已知AC與BD相交于點(diǎn)E,DE=CE,AE=BE求證:∠A=∠B

查看答案和解析>>

同步練習(xí)冊答案