【題目】某校八(1)班同學為了解2018年姜堰某小區(qū)家庭月均用水情況,隨機調查了該小區(qū)部分家庭,并將調查數(shù)據(jù)進行如下整理,請解答以下問題:
月均用水量x(t) | 頻數(shù)(戶) | 頻率 |
0<x≤5 | 6 | 0.12 |
5<x≤10 | 12 | 0.24 |
10<x≤15 | m | 0.32 |
15<x≤20 | 10 | n |
20<x≤25 | 4 | 0.08 |
25<x≤30 | 2 | 0.04 |
(1)本次調查采用的調杳方式是 (填“普査”或“抽樣調查”),樣本容量是 ;
(2)補全頻數(shù)分布直方圖:
(3)若將月均用水量的頻數(shù)繪成扇形統(tǒng)計圖,則月均用水量“15<x≤20”的圓心角度數(shù)是 ;
(4)若該小區(qū)有5000戶家庭,求該小區(qū)月均用水量超過20t的家庭大約有多少戶?
【答案】(1)抽樣調查,50;(2)見解析;(3)72°;(4)600(戶)
【解析】
(1)由抽樣調查的定義及第1組的頻數(shù)與頻率可得答案;
(2)根據(jù)頻數(shù)=總數(shù)×頻率可得m的值,據(jù)此即可補全直方圖;
(3)先求得n的值,再用360°乘以n可得答案;
(4)用總戶數(shù)乘以最后兩組的頻率之和可得答案.
解:(1)本次調查采用的調杳方式是抽樣調查,樣本容量為6÷0.12=50,
故答案為:抽樣調查,50;
(2)m=50×0.32=16,
補全直方圖如下:
(3)∵n=10÷50=0.2,
∴月均用水量“15<x≤20”的圓心角度數(shù)是360°×0.2=72°,
故答案為:72°;
(4)該小區(qū)月均用水量超過20t的家庭大約有5000×(0.08+0.04)=600(戶).
科目:初中數(shù)學 來源: 題型:
【題目】已知:拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸,M為它的頂點
(1)求拋物線的函數(shù)關系式;
(2)求△MCB的面積;
(3)設點P是直線l上的一個動點,當PA+PC最小時,求最小值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在6×8的網(wǎng)格中,每個小正方形的邊長均為1,點O和△ABC的頂點均為小正方形的頂點.
(1)在圖中△ABC的內部作△A′B′C′,使△A′B′C′和△ABC位似,且位似中心為點O,位似比為1:2;
(2)連接(1)中的AA′,則線段AA′的長度是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB⊥BC,DC⊥BC,AE 平分∠BAD,DE 平分∠ADC,以下結論:①∠AED=90°;②點 E 是 BC 的中點;③DE=BE;④AD=AB+CD;其中正確的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠1=∠2,DB=DC.
(1)求證:△ABD≌△EDC;
(2)若∠A=135°,∠BDC=30°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用1塊A型鋼板可制成2塊C型鋼板,1塊D型鋼板,用1塊B型鋼板可制成1塊C型鋼板,2塊D型鋼板.
(1)現(xiàn)需要15塊C型鋼板,18塊D型鋼板,可恰好用A型鋼板,B型鋼板各多少塊?
(2)若購買A型鋼板和B型鋼板共20塊.要求制成C型鋼板不少于25塊,D型鋼板不少于30塊,求A、B型鋼板的購買方案共有多少種?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知點E和點F分別在直線AB和CD上,EL和FG分別平分∠BEF和∠EFC,EL∥FG.
(1)求證:AB∥CD;
(2)如圖,點M為FD上一點,∠BEM,∠EFD的角平分線EH,FH相交于點H,若∠H=∠FEM+15°,延長HE交FG于G點,求∠G的度數(shù);
(3)如圖,點N在直線AB和直線CD之間,且EN⊥FN,點P為直線AB上的點,若∠EPF,∠PFN的角平分級交于點Q,設∠BEN=α,直接寫出∠PQF的大小為(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與x軸,y軸分別交于A,B兩點,點為直線上一點,直線過點C.
求m和b的值;
直線與x軸交于點D,動點P從點D開始以每秒1個單位的速度向x軸負方向運動設點P的運動時間為t秒.
①若點P在線段DA上,且的面積為10,求t的值;
②是否存在t的值,使為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=30°,M、N分別在OA、OB上,且OM=2,ON=4,點P、Q分別在OB、OA上,則MP+PQ+QN的最小值是 _______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com