1.如圖,△ABO關(guān)于x軸對(duì)稱,若點(diǎn)A的坐標(biāo)為(a,b),則點(diǎn)B的坐標(biāo)為( 。
A.(b,a)B.(-a,b)C.(a,-b)D.(-a,-b)

分析 由于△ABO關(guān)于x軸對(duì)稱,所以點(diǎn)B與點(diǎn)A關(guān)于x軸對(duì)稱.根據(jù)平面直角坐標(biāo)系中兩個(gè)關(guān)于坐標(biāo)軸成軸對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn):關(guān)于x軸對(duì)稱的點(diǎn),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù),得出結(jié)果.

解答 解:由題意,可知點(diǎn)B與點(diǎn)A關(guān)于x軸對(duì)稱,
又∵點(diǎn)A的坐標(biāo)為(a,b),
∴點(diǎn)B的坐標(biāo)為(a,-b).
故選C.

點(diǎn)評(píng) 本題考查了平面直角坐標(biāo)系中關(guān)于x軸成軸對(duì)稱的兩點(diǎn)的坐標(biāo)之間的關(guān)系.能夠根據(jù)題意得出點(diǎn)B與點(diǎn)A關(guān)于x軸對(duì)稱是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在Rt△ABC中,∠C=90°,AC=8,BC=6,將其如圖折疊使點(diǎn)A與點(diǎn)B重合,折痕為DE,連接BE,則tan∠CBE的值為( 。
A.$\frac{24}{7}$B.$\frac{\sqrt{7}}{3}$C.$\frac{7}{24}$D.$\frac{1}{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列黑體字中是軸對(duì)稱的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知直線y=-3x+6與x軸交于A點(diǎn),與y軸交于B點(diǎn).
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求直線y=-3x+6與坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,馬路的兩邊CF,DE互相平行,線段CD為人行橫道,馬路兩側(cè)的A,B兩點(diǎn)分別表示車站和超市.CD與AB所在直線互相平行,且都與馬路的兩邊垂直.馬路寬20米,A,B相距62米,∠A=67°,∠B=37°.
(1)求CD與AB之間的距離;
(2)某人從車站A出發(fā),沿折線A→D→C→B去超市B.求他沿折線A→D→C→B到達(dá)超市比直接橫穿馬路多走多少米.
參考數(shù)據(jù):sin67°$≈\frac{12}{13}$,cos67°≈$\frac{12}{5}$,tan67°≈$\frac{12}{5}$,sin37°≈$\frac{3}{5}$,cos37°≈$\frac{4}{5}$,tan37°≈$\frac{3}{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,在△ABC中,∠C=90°,∠B=60°,AC=6,斜邊AB的垂直平分線交AB于點(diǎn)E,交AC于點(diǎn)D,則CD的長(zhǎng)為2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知實(shí)數(shù)a,b,c在數(shù)軸上的位置如圖所示,則化簡(jiǎn)$\sqrt{{a}^{2}}$-$\sqrt{(a-b)^{2}}$-$\sqrt{(a-c)^{2}}$-$\sqrt{(b-c)^{2}}$的結(jié)果是( 。
A.-3aB.-a+2b-2cC.2bD.a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖,已知點(diǎn)A、B在雙曲線y=$\frac{m}{x}$(m>0)上,點(diǎn)C、D在雙曲線y=$\frac{n}{x}$(n<0)上,
AC∥BD∥y軸,AC=3,BD=4,AC與BD的距離為7,則m-n的值為12.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.(1)計(jì)算:(π-3)0$+\sqrt{18}$-2sin45°-($\frac{1}{8}$)-1
(2)解方程:x(x-6)=-9.

查看答案和解析>>

同步練習(xí)冊(cè)答案