(2013•綏化)如圖,點A,B,C,D為⊙O上的四個點,AC平分∠BAD,AC交BD于點E,CE=4,CD=6,則AE的長為( 。
分析:根據(jù)圓周角定理∠CAD=∠CDB,繼而證明△ACD∽△DCE,設(shè)AE=x,則AC=x+4,利用對應(yīng)邊成比例,可求出x的值.
解答:解:設(shè)AE=x,則AC=x+4,
∵AC平分∠BAD,
∴∠BAC=∠CAD,
∵∠CDB=∠BAC(圓周角定理),
∴∠CAD=∠CDB,
∵∠ACD=∠ACD,
∴△ACD∽△DCE,
CD
CE
=
AC
DC
,即
6
4
=
x+4
6

解得:x=5.
故選B.
點評:本題考查了圓周角定理、相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是得出∠CAD=∠CDB,證明△ACD∽△DCE.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•綏化)如圖,A,B,C三點在同一條直線上,∠A=∠C=90°,AB=CD,請?zhí)砑右粋適當(dāng)?shù)臈l件
AE=CB
AE=CB
,使得△EAB≌△BCD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•綏化)如圖所示,以O(shè)為端點畫六條射線后OA,OB,OC,OD,OE,O后F,再從射線OA上某點開始按逆時針方向依次在射線上描點并連線,若將各條射線所描的點依次記為1,2,3,4,5,6,7,8…后,那么所描的第2013個點在射線
OC
OC
上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•綏化)如圖,在平行四邊形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別是邊AD,AB的中點,EF交AC于點H,則
AH
HC
的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•綏化)如圖,直線MN與x軸,y軸分別相交于A,C兩點,分別過A,C兩點作x軸,y軸的垂線相交于B點,且OA,OC(OA>OC)的長分別是一元二次方程x2-14x+48=0的兩個實數(shù)根.
(1)求C點坐標(biāo);
(2)求直線MN的解析式;
(3)在直線MN上存在點P,使以點P,B,C三點為頂點的三角形是等腰三角形,請直接寫出P點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案