【題目】從共享單車,共享汽車等共享出行到共享雨傘等共享物品,各式各樣的共享經(jīng)濟(jì)模式在各個領(lǐng)域迅速的普及,根據(jù)國家信息中心發(fā)布的中國分享經(jīng)濟(jì)發(fā)展報告2017顯示,參與共享經(jīng)濟(jì)活動超6 億人,比上一年增加約1億人.

1)為獲得北京市市民參與共享經(jīng)濟(jì)活動信息,下列調(diào)查方式中比較合理的是   ;

A.對某學(xué)校的全體同學(xué)進(jìn)行問卷調(diào)查

B.對某小區(qū)的住戶進(jìn)行問卷調(diào)查

C.在全市里的不同區(qū)縣,選取部分市民進(jìn)行問卷調(diào)查

2)調(diào)查小組隨機(jī)調(diào)查了延慶區(qū)市民騎共享單車情況,某社區(qū)年齡在1236歲的人有1000人,從中隨機(jī)抽取了100人,統(tǒng)計了他們騎共享單車的人數(shù),并繪制了如下不完整的統(tǒng)計圖表.如圖所示.騎共享單車的人數(shù)統(tǒng)計表

年齡段(歲)

頻數(shù)

頻率

12x16

2

0.02

16x20

3

0.03

20x24

15

a

24x28

25

0.25

28x32

b

0.30

32x36

25

0.25

根據(jù)以上信息解答下列問題:

①統(tǒng)計表中的a   ;b   

②補(bǔ)全頻數(shù)分布直方圖;

③試估計這個社區(qū)年齡在20歲到32歲(含20歲,不含32歲)騎共享單車的人有多少人?

【答案】1C;(2)①0.15,30;②見解析;③估計這個社區(qū)年齡在20歲到32歲(含20歲,不含32歲)騎共享單車的人有700人.

【解析】

1)根據(jù)抽樣調(diào)查的定義可得;

2)①根據(jù)頻率=頻數(shù)÷總數(shù)可分別求得a、b的值;

②由①中所求數(shù)據(jù)可補(bǔ)全圖形;

③總?cè)藬?shù)乘以樣本中第34、5組的頻率之和可得答案.

解:(1)調(diào)查方式中比較合理的是C,

故答案為C;

2)①a15÷1000.15b100×0.330,

故答案為0.1530;

②補(bǔ)全圖形如下:

1000×0.15+0.25+0.3)=700(人),

答:估計這個社區(qū)年齡在20歲到32歲(含20歲,不含32歲)騎共享單車的人有700人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)軸于點、,交軸于點,在軸上有一點,連接.

(1)求二次函數(shù)的表達(dá)式;

(2)若點為拋物線在軸負(fù)半軸上方的一個動點,求面積的最大值;

(3)拋物線對稱軸上是否存在點,使為等腰三角形,若存在,請直接寫出所有點的坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,電線桿AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC上,若CD與地面成45°,∠A60°,CD4m,,則電線桿AB的長為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為了吸引顧客,設(shè)立一個可自由轉(zhuǎn)動的轉(zhuǎn)盤,(如圖,3個數(shù)字所在的扇形面積相等)并規(guī)定,顧客每購滿100元商品,可轉(zhuǎn)動兩次轉(zhuǎn)盤,轉(zhuǎn)盤停止后,看指針指向的數(shù).(如果指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向數(shù)為止)獲獎方法是:①指針兩次都指向3,顧客可獲得90元購物券,②指針只有一次指向3,顧客可得36元購物券,③指針兩次都不指向3,顧客只能獲得18元購物券;若顧客不愿轉(zhuǎn)動轉(zhuǎn)盤,則可直接獲得30元購物券

1)試用樹狀圖或列表法給出兩次轉(zhuǎn)動轉(zhuǎn)盤指針?biāo)锌赡苤赶虻慕Y(jié)果;

2)請分別求顧客獲得90元,36元,18元購物券的概率;

3)你認(rèn)為轉(zhuǎn)動轉(zhuǎn)盤和直接獲得購物券哪種方式更合算?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角△ABC中,BCABAC,求作一點P,使得∠BPC與∠A互補(bǔ),甲、乙兩人作法分別如下:

甲:以B為圓心,AB長為半徑畫弧交ACP點,則P即為所求.

乙:作BC的垂直平分線和∠BAC的平分線,兩線交于P點,則P即為所求.

對于甲、乙兩人的作法,下列敘述正確的是( )

A. 兩人皆正確B. 甲正確,乙錯誤C. 甲錯誤,乙正確D. 兩人皆錯誤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D的中點,作DEAC,交AB的延長線于點F,連接DA

(1)求證:EF為半圓O的切線;

(2)若DADF=6,求陰影區(qū)域的面積.(結(jié)果保留根號和π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠BAC=90°,AB=2AC,點A(2,0)、B(0,4),點C在第一象限內(nèi),雙曲線y=x>0)經(jīng)過點C.將ABC沿y軸向上平移m個單位長度,使點A恰好落在雙曲線上,則m的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在兩建筑物之間有一旗桿,高15米,從A點經(jīng)過旗桿頂點恰好看到矮建筑物的墻角C點,且俯角α60°,又從A點測得D點的俯角β30°,若旗桿底部G點為BC的中點,求矮建筑物的高CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+3x+4x軸于AB兩點(點AB左邊),交y軸于點C

1)求A、B兩點的坐標(biāo);

2)求直線BC的函數(shù)關(guān)系式;

3)點P在拋物線的對稱軸上,連接PB,PC,若△PBC的面積為4,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案