【題目】如圖中,,的垂直平分線分別交,,垂足分別是.

1)若,求的周長.

2)若,求的度數(shù).

【答案】110;(2)∠DAE=20°.

【解析】

1)根據(jù)線段垂直平分線的性質(zhì)可得AD=BDAE=CE,可得△ADE的周長=AD+AE+DE=BC,即可得答案;(2)根據(jù)三角形內(nèi)角和定理可得∠B+C=80°,根據(jù)等腰三角形的性質(zhì)可得∠BAD=B,∠CAE=C,進(jìn)而可求出∠DAE的度數(shù).

1)∵DMEN分別是ABAC的垂直平分線,

AD=BD,AE=CE,

BC=10

∴△ADE的周長=AD+DE+CE=BD+DE+CE=BC=10.

2)∵AD=BD,AE=CE

∴∠BAD=B,∠CAE=C,

∵∠BAC=100°

∴∠B+C=180°-100°=80°,

∴∠DAE=BAC-BAD-CAE=BAC-(B+C)=100°-80°=20°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)學(xué)活動課上,小麗為了測量校園內(nèi)旗桿AB的高度,站在教學(xué)樓的C處測得旗桿底端B的俯角為45°,測得旗桿頂端A的仰角為30°.已知旗桿與教學(xué)樓的距離BD=9m,請你幫她求出旗桿的高度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠BAC=90°,ADBC,垂足為D.

(1)求作∠ABC的平分線,分別交AD,ACP,Q兩點(diǎn);(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)證明AP=AQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P⊙O的直徑AB的延長線上,PC⊙O的切線,點(diǎn)C為切點(diǎn),連接AC,過點(diǎn)APC的垂線,點(diǎn)D為垂足,AD⊙O于點(diǎn)E.

(1)如圖1,求證:∠DAC=∠PAC;

(2)如圖2,點(diǎn)F(與點(diǎn)C位于直徑AB兩側(cè))在⊙O上,,連接EF,過點(diǎn)FAD的平行線交PC于點(diǎn)G,求證:FG=DE+DG;

(3)(2)的條件下,如圖3,若AE=DG,PO=5,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,平分,延長線上一點(diǎn),的延長線于,的延長線交,連接,下列結(jié)論:①;②∠AGH=BAE+ACB;③,其中正確的結(jié)論有( )個.

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在四邊形中,,,點(diǎn),分別在射線,上,滿足.

1)如圖1,若點(diǎn),分別在線段上,求證:;

2)如圖2,若點(diǎn),分別在線段延長線與延長線上,請直接寫出的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)中學(xué)為了了解今年參加中招考試九年級300名學(xué)生的體育成績,特對學(xué)生參加課外鍛煉的情況進(jìn)行了摸底,隨機(jī)對九年級30名學(xué)生一周內(nèi)平均每天參加課外鍛煉的時間進(jìn)行了調(diào)查,結(jié)果如下:(單位:分鐘)

(1)補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖.

(2)填空:在這個問題中,總體是___________,樣本是_________

由統(tǒng)計(jì)分析得,這組數(shù)據(jù)的平均數(shù)是39.37(分),眾數(shù)是______,中位數(shù)是______

(3)如果描述該校300名學(xué)生一周內(nèi)平均每天參加課外鍛煉時間的總體情況,你認(rèn)為用平均數(shù)、眾數(shù)、中位數(shù)中的哪一個量比較合適?

(4)估計(jì)實(shí)驗(yàn)中學(xué)九年級有多少名學(xué)生,平均每天參加課外鍛煉的時間多于30分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,AE是角平分線,BM平分∠ABCAE于點(diǎn)M,經(jīng)過B、M兩點(diǎn)的⊙OBC于點(diǎn)G,交AB于點(diǎn)F,F(xiàn)B恰為⊙O的直徑.

(1)判斷AE與⊙O的位置關(guān)系,并說明理由;

(2)若BC=6,AC=4CE時,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一位籃球運(yùn)動員在距離籃圈中心水平距離4m處起跳投籃,球沿一條拋物線運(yùn)動,當(dāng)球運(yùn)動的水平距離為2.5m時,達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃框內(nèi).已知籃圈中心距離地面高度為3.05m,在如圖所示的平面直角坐標(biāo)系中,下列說法正確的是( 。

A. 此拋物線的解析式是y=﹣x2+3.5

B. 籃圈中心的坐標(biāo)是(4,3.05)

C. 此拋物線的頂點(diǎn)坐標(biāo)是(3.5,0)

D. 籃球出手時離地面的高度是2m

查看答案和解析>>

同步練習(xí)冊答案