【題目】如圖,在四邊形ABCD中,AD=BC=12,AB=CD,BD=15,點(diǎn)E從D點(diǎn)出發(fā),以每秒4個(gè)單位的速度沿D→A→D勻速移動,點(diǎn)F從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿CB向點(diǎn)B作勻速移動,點(diǎn)G從點(diǎn)B出發(fā)沿BD向點(diǎn)D勻速移動,三個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)有一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),其余兩點(diǎn)也隨之停止運(yùn)動,假設(shè)移動時(shí)間為t秒.
(1)試說明:AD∥BC;
(2)在移動過程中,小明發(fā)現(xiàn)有△DEG與△BFG全等的情況出現(xiàn),請你探究這樣的情況會出現(xiàn)幾次?并分別求出此時(shí)的移動時(shí)間t和G點(diǎn)的移動距離.
【答案】(1)見解析(2)綜上可知共有三次,移動的時(shí)間分別為1秒、2.4秒、4秒、4.2秒,
移動的距離分別為4、7.5、7.5、7.2.
【解析】
試題(1)由AD=BC=12,AB=CD,BD為公共邊,所以可證得△ABD≌△CDB,所以可知∠ADB=∠CBD,所以AD∥BC;
(2)設(shè)運(yùn)動時(shí)間為t,設(shè)G點(diǎn)的移動距離為y,根據(jù)全等三角形的性質(zhì)進(jìn)行解答即可.
(1)證明:在△ABD和△CDB中,,
∴△ABD≌△CDB,
∴∠ADB=∠CBD,
∴AD∥BC,
(2)解:設(shè)G點(diǎn)的移動距離為y,
∵AD∥BC,
∴∠EDG=∠FBG,
若△DEG與△BFG全等,
則有△DEG≌△BFG或△DGE≌△BFG,
可得:DE=BF,DG=BG;或DE=BG,DG=BF,
①當(dāng)E由D到A,
即0<t≤3時(shí),有4t=12﹣t,解得:t=2.4,
∵y=15﹣y,
∴y=7.5,
或4t=y,解得:t=1,
∵12﹣t=15﹣y,∴y=4,
②當(dāng)F由A返回到D,即3<t≤6時(shí),有24﹣4t=12﹣t,解得:t=4,
∵y=15﹣y,∴y=7.5,
或24﹣4t=y,解得:t=4.2
∵12﹣t=15﹣y,y=7.2,
綜上可知共有三次,移動的時(shí)間分別為1秒、2.4秒、4秒、4.2秒,
移動的距離分別為4、7.5、7.5、7.2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,CE⊥AB 于 E,DF⊥AB 于 F,AC∥ED,CE 是∠ACB 的平分線, 則圖中與∠FDB 相等的角(不包含∠FDB)的個(gè)數(shù)為( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC中,D為AC上一點(diǎn),E為AB延長線上一點(diǎn),DE⊥AC交BC于點(diǎn)F,且DF=EF.
(1)求證:CD=BE;
(2)若AB=12,試求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被3等分,指針落在每個(gè)扇形內(nèi)的機(jī)會均等.
(1)現(xiàn)隨機(jī)轉(zhuǎn)動轉(zhuǎn)盤一次,停止后,指針指向1的概率是多少;
(2)小明和小華利用這個(gè)轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認(rèn)為對雙方公平嗎?請用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是甲、乙兩車在某時(shí)段速度隨時(shí)間變化的圖象,下列結(jié)論錯誤的是( )
A. 乙前4秒行駛的路程為48米 B. 兩車到第3秒時(shí)行駛的路程相等
C. 在0到8秒內(nèi)甲的速度每秒增加4米/秒 D. 在4至8秒內(nèi)甲的速度都大于乙的速度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分別是C、D,則下列結(jié)論中錯誤的是( 。
A. PC=PD B. OC=OD C. OC=OP D. ∠CPO=∠DPO
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BD,CD分別是過⊙O上點(diǎn)B,C的切線,且∠BDC=110°.連接AC,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=4,CD=5。把三角板DCE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到△D1CE1(如圖2),此時(shí)AB與CD1交于點(diǎn)O,則線段AD1的長度為。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 , 已知 ∠1+∠2=180,∠3=∠B, 試說明 DE ∥ BC. 下面是部分推導(dǎo)過程,請你在括號內(nèi)填上推導(dǎo)依據(jù)或內(nèi)容:
證明: ∵∠1+∠2=180( 已知 )
∠1=∠4( )
∴∠2+∠4=180( )
∵EH ∥ AB( )
∴∠B=∠EHC( )
∵∠3=∠B( )
∴∠3=∠EHC( 等量代換 )
∴DE ∥ BC( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com