. 取一張矩形紙片按照?qǐng)D1、圖2中的方法對(duì)折,并沿圖3中過(guò)矩形頂點(diǎn)的斜線(虛線)剪開,把剪下的①這部分展開,平鋪在桌面上.若平鋪的這個(gè)圖形是正六邊形,則這張矩形紙片的寬和長(zhǎng)之比為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省杭州市余杭區(qū)星橋中學(xué)八年級(jí)第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
小華將一張矩形紙片(如圖1)沿對(duì)角線AC剪開,得到兩張三角形紙片(如圖2),其中∠ACB=β,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上。
【小題1】(1)若DE與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連結(jié)MB,MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你猜想并寫出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;(3分)
【小題2】(2)在(1)的條件下,求出∠BMD的大。ㄓ煤碌氖阶颖硎荆⒄f(shuō)明當(dāng)β=45o時(shí),△BMD是什么三角形;(5分)
【小題3】(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(小于90o),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連結(jié)MB,MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫出你的猜想,不證明,并說(shuō)明β為何值時(shí)△BMD為等邊三角形。(2分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012年浙江省杭州市八年級(jí)第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
小華將一張矩形紙片(如圖1)沿對(duì)角線AC剪開,得到兩張三角形紙片(如圖2),其中∠ACB=β,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上。
1.(1)若DE與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連結(jié)MB,MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你猜想并寫出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;(3分)
2.(2)在(1)的條件下,求出∠BMD的大小(用含β的式子表示),并說(shuō)明當(dāng)β=45o時(shí),△BMD是什么三角形;(5分)
3.(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(小于90o),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連結(jié)MB,MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫出你的猜想,不證明,并說(shuō)明β為何值時(shí)△BMD為等邊三角形。(2分)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com