已知反比例函數(shù)y=
kx
(k≠0)和一次函數(shù)y=-x-6.
(1)若一次函數(shù)和反比例函數(shù)的圖象交于點(-3,m),求m和k的值;
(2)當k滿足什么條件時,這兩個函數(shù)的圖象有兩個不同的交點;
(3)當k=-2時,設(shè)(2)中的兩個函數(shù)圖象的交點分別為A、B,試判斷此時A、B兩點分別在第幾象限?∠AOB是銳角還是鈍角?(只要求直接寫出結(jié)論)
分析:(1)兩個函數(shù)交點的坐標滿足這兩個函數(shù)關(guān)系式,因此將交點的坐標分別代入反比例函數(shù)關(guān)系式和一次函數(shù)關(guān)系式即可求得待定的系數(shù),從而求得這兩個函數(shù)的關(guān)系式;
(2)函數(shù)的圖象有兩個不同的交點,即兩個解,用二次函數(shù)根的判別式可解;
(3)分析函數(shù)圖象的性質(zhì),可順利推出結(jié)論.
解答:解:(1)∵一次函數(shù)和反比例函數(shù)的圖象交于點(-3,m),
m=
-k
3
m=-(-3)-6
,
解得
m=-3
k=9

∴m=-3,k=9;

(2)由聯(lián)立方程組
y=
k
x
(k≠0)
y=-x-6
,
有-x-6=
k
x
,即x2+6x+k=0.
要使兩個函數(shù)的圖象有兩個不同的交點,須使方程x2+6x+k=0有兩個不相等的實數(shù)根.
∴△=62-4k=36-4k>0,
解得k<9,且k≠0.
∴當k<9且k≠0時,這兩個函數(shù)的圖象有兩個不同的交點;

(3)當k=-2時,-2在k的取值范圍內(nèi),
此時函數(shù)y=-
2
x
的圖象在第二、四象限內(nèi),
從而它與y=-x-6的兩個交點A,B應(yīng)分別在第二,四象限內(nèi),
此時∠AOB是鈍角.
點評:本題綜合考查反比例函數(shù)與方程組的相關(guān)知識點.先由點的坐標求函數(shù)解析式,然后解由解析式組成的方程組求出交點的坐標,體現(xiàn)了數(shù)形結(jié)合的思想.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知反比例函數(shù)y=
k
x
圖象過第二象限內(nèi)的點A(-2,m)AB⊥x軸于B,Rt△AOB精英家教網(wǎng)面積為3,若直線y=ax+b經(jīng)過點A,并且經(jīng)過反比例函數(shù)y=
k
x
的圖象上另一點C(n,-
3
2
),
(1)反比例函數(shù)的解析式為
 
,m=
 
,n=
 

(2)求直線y=ax+b的解析式;
(3)在y軸上是否存在一點P,使△PAO為等腰三角形?若存在,請直接寫出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知反比例函數(shù)y=
kx
的圖象經(jīng)過點A(-2,3),求這個反比例函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知反比例函數(shù)y=
kx
的圖象經(jīng)過點(3,-4),則這個函數(shù)的解析式為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知反比例函數(shù)y1=
k
x
和二次函數(shù)y2=-x2+bx+c的圖象都過點A(-1,2)
(1)求k的值及b、c的數(shù)量關(guān)系式(用c的代數(shù)式表示b);
(2)若兩函數(shù)的圖象除公共點A外,另外還有兩個公共點B(m,1)、C(1,n),試在如圖所示的直角坐標系中畫出這兩個函數(shù)的圖象,并利用圖象回答,x為何值時,y1<y2;
(3)當c值滿足什么條件時,函數(shù)y2=-x2+bx+c在x≤-
1
2
的范圍內(nèi)隨x的增大而增大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知反比例函數(shù)y=
kx
(k<0)的圖象上有兩點A(x1,y1)、B(x2,y2),且有x1<x2<0,則y1和y2的大小關(guān)系是
y1<y2
y1<y2

查看答案和解析>>

同步練習冊答案