【題目】某鎮(zhèn)水庫的可用水量為12000萬立方米,假設(shè)年降水量不變,能維持該鎮(zhèn)16萬人20年的用水量.實施城市化建設(shè),新遷入4萬人后,水庫只夠維持居民15年的用水量.
(1)問:年降水量為多少萬立方米?每人年平均用水量多少立方米?
(2)政府號召節(jié)約用水,希望將水庫的保用年限提高到25年,則該鎮(zhèn)居民人均每年需節(jié)約多少立方米才能實現(xiàn)目標(biāo)?

【答案】
(1)解:設(shè)年降水量為x萬立方米,每人每年平均用水量為y立方米,由題意,得

,

解得:

答:年降水量為200萬立方米,每人年平均用水量為50立方米


(2)解:設(shè)該城鎮(zhèn)居民年平均用水量為z立方米才能實現(xiàn)目標(biāo),由題意,得

12000+25×200=20×25z,

解得:z=34

則50﹣34=16(立方米).

答:該城鎮(zhèn)居民人均每年需要節(jié)約16立方米的水才能實現(xiàn)目標(biāo)


【解析】(1)設(shè)年降水量為x萬立方米,每人每年平均用水量為y立方米,根據(jù)儲水量+降水量=總用水量建立方程求出其解就可以了;(2)設(shè)該城鎮(zhèn)居民年平均用水量為z立方米才能實現(xiàn)目標(biāo),同樣由儲水量+25年降水量=25年20萬人的用水量為等量關(guān)系建立方程求出其解即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=5,BC=3,AC=4,以點C為圓心的圓與AB相切,則⊙C的半徑為(
A.2.3
B.2.4
C.2.5
D.2.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有公路l1同側(cè)、l2異側(cè)的兩個城鎮(zhèn)A,B,如下圖.電信部門要修建一座信號發(fā)射塔,按照設(shè)計要求,發(fā)射塔到兩個城鎮(zhèn)A,B的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請用尺規(guī)作圖找出所有符合條件的點,注明點C的位置.(保留作圖痕跡,不要求寫出畫法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC,Am°,ABC和∠ACD的平分線相交于點A1,得∠A1;A1BC和∠A1CD的平分線相交于點A2,得∠A2;…;A2018BC和∠A2018CD的平分線交于點A2019,則∠A2019________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,EAC,∠AEB=∠ABC.

(1)1,∠BAC的角平分線AD,分別交CB、BED、F兩點,求證:∠EFD=∠ADC;

(2)2,△ABC的外角∠BAG的角平分線AD,分別交CB、BE的延長線于DF兩點,試探究(1)中結(jié)論是否仍成立?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙0的切線,切點為D,AB經(jīng)過圓心O并與圓相交于點E,連接AD.

(1)求證:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形ABCO的兩邊OA,OC在坐標(biāo)軸的正半軸上,BC∥x軸,OA=OC=4,以直線x=1為對稱軸的拋物線過A,B,C三點.

(1)求該拋物線的函數(shù)解析式;
(2)已知直線l的解析式為y=x+m,它與x軸交于點G,在梯形ABCO的一邊上取點P.
①當(dāng)m=0時,如圖1,點P是拋物線對稱軸與BC的交點,過點P作PH⊥直線l于點H,連結(jié)OP,試求△OPH的面積;
②當(dāng)m=﹣3時,過點P分別作x軸、直線l的垂線,垂足為點E,F(xiàn).是否存在這樣的點P,使以P,E,F(xiàn)為頂點的三角形是等腰三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校開展“陽光體育”活動,學(xué)生會為了解學(xué)生最喜歡哪一種球類運動項目,:足球、:乒乓球、:籃球、:羽毛球,隨機(jī)抽取了一部分學(xué)生進(jìn)行調(diào)查(要求每位同學(xué)只能選擇一種喜歡的球類),并將調(diào)查結(jié)果繪制成如下兩個不完整的統(tǒng)計圖,如圖1,圖2,請你根據(jù)圖中提供的信息解答下列問題。

(1)在這次調(diào)查中,一共調(diào)查了_____名學(xué)生;

(2)在圖1扇形統(tǒng)計圖中,求出“”部分所對應(yīng)的圓心角等于_____度;

(3)求喜歡籃球的同學(xué)占被抽查人數(shù)的百分比,并補(bǔ)全頻數(shù)分布折線統(tǒng)計圖.

查看答案和解析>>

同步練習(xí)冊答案