【題目】如果一個(gè)圓上所有的點(diǎn)都在一個(gè)角的內(nèi)部或邊上,那么稱(chēng)這個(gè)圓為該角的角內(nèi)圓.特別地,當(dāng)這個(gè)圓與角的至少一邊相切時(shí),稱(chēng)這個(gè)圓為該角的角內(nèi)相切圓.在平面直角坐標(biāo)系xOy中,點(diǎn)E,F分別在x軸的正半軸和y軸的正半軸上.
⑴ 分別以點(diǎn)(1,0),(1,1),(3,2)為圓心,1為半徑作圓,得到⊙,⊙和⊙,其中是的角內(nèi)圓的是 ;
⑵ 如果以點(diǎn)(,2)為圓心,以1為半徑的⊙為的角內(nèi)圓,且與一次函數(shù)圖像有公共點(diǎn),求的取值范圍;
⑶ 點(diǎn)在第一象限內(nèi),如果存在一個(gè)半徑為1且過(guò)點(diǎn)(2,)的圓為的角內(nèi)相切圓,直接寫(xiě)出的取值范圍.
【答案】(1) ⊙B,⊙C;(2) ;(3) 60°≤∠EOM<90°.
【解析】
(1)畫(huà)出圖象,根據(jù)角內(nèi)相切圓的定義判斷即可.
(2)求出兩種特殊位置時(shí)t的值即可判斷.
(3)如圖3中,連接OP,OM.首先求出∠POE,根據(jù)圖象可知當(dāng)射線(xiàn)OM在∠POF的內(nèi)部(包括射線(xiàn)OP,不包括射線(xiàn)OF)時(shí),存在一個(gè)半徑為1且過(guò)點(diǎn)的圓為∠EOM的角內(nèi)相切圓.
⑴ 如圖1中, 點(diǎn)(1,0),(1,1),(3,2)
觀(guān)察圖象可知,⊙B和⊙C是∠EOF的角內(nèi)圓.
故答案為:⊙B,⊙C;
⑵ 如圖,當(dāng)⊙與軸相切時(shí),設(shè)切點(diǎn)為,則,可得.
當(dāng)⊙與相切時(shí),設(shè)切點(diǎn)為,連接,設(shè)直線(xiàn)與直線(xiàn)交于點(diǎn),
由的性質(zhì)得:
則△,△都是等腰直角三角形,
,
∴ ,,
∴
可得,
可知,滿(mǎn)足條件的的取值范圍是.
⑶如圖3中,連接OP,OM.
∵ ,
∴
∴∠POE=60°,
觀(guān)察圖象可知當(dāng)射線(xiàn)OM在∠POF的內(nèi)部(包括射線(xiàn)OP,不包括射線(xiàn)OF)時(shí),
存在一個(gè)半徑為1且過(guò)點(diǎn)的圓為∠EOM的角內(nèi)相切圓,
∴ 60°≤∠EOM<90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形中,點(diǎn)是邊的中點(diǎn).將沿對(duì)折至,延長(zhǎng)交邊于點(diǎn),連接,.下列結(jié)論:①;②;③;④.其中正確的有( )
A.①②B.①③④C.②③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年春節(jié)前夕“新型冠狀病毒”爆發(fā).疫情就是命令,防控就是使命,全國(guó)各地馳援武漢的醫(yī)護(hù)工作者,踐行醫(yī)者仁心的使命與擔(dān)當(dāng),舍小家,為大家,用自己的專(zhuān)業(yè)知識(shí)與血肉之軀構(gòu)筑起全社會(huì)抗擊疫情的鋼鐵長(zhǎng)城.如圖兩幅圖是2月9日當(dāng)天全國(guó)部分省市馳援武漢醫(yī)護(hù)工作者的人數(shù)統(tǒng)計(jì)圖(不完整).
請(qǐng)解答下列問(wèn)題:
(1)①上述省市2月9日當(dāng)天馳援武漢的醫(yī)護(hù)工作者的總?cè)藬?shù)為 人;
②請(qǐng)將圖①的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)請(qǐng)求出圖②的扇形統(tǒng)計(jì)圖中“山西”所對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)本次河北馳援武漢的醫(yī)護(hù)工作者中,有5人報(bào)名去重癥區(qū),王醫(yī)生和李醫(yī)生就在其中,若從報(bào)名的5人中隨機(jī)安排2人,求同時(shí)安排王醫(yī)生和李醫(yī)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角中,,, ,將繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn),得到.(1)如圖1,當(dāng)點(diǎn)在線(xiàn)段的延長(zhǎng)線(xiàn)上時(shí),則的度數(shù)為______________度;(2)如圖2,點(diǎn)為線(xiàn)段中點(diǎn),點(diǎn)是線(xiàn)段上的動(dòng)點(diǎn),在繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)過(guò)程中,點(diǎn)的對(duì)應(yīng)點(diǎn)是點(diǎn),則線(xiàn)段長(zhǎng)度最小值是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】車(chē)間有20名工人,某天他們生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)如下表.
車(chē)間20名工人某一天生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)表
生產(chǎn)零件的個(gè)數(shù)(個(gè)) | 9 | 10 | 11 | 12 | 13 | 15 | 16 | 19 | 20 |
工人人數(shù)(人) | 1 | 1 | 6 | 4 | 2 | 2 | 2 | 1 | 1 |
(1)求這一天20名工人生產(chǎn)零件的平均個(gè)數(shù);
(2)為了提高大多數(shù)工人的積極性,管理者準(zhǔn)備實(shí)行“每天定額生產(chǎn),超產(chǎn)有獎(jiǎng)”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進(jìn)行分析,你將如何確定這個(gè)“定額”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)(頂點(diǎn)是網(wǎng)格線(xiàn)的交點(diǎn))和直線(xiàn)l及點(diǎn)O.
(1)畫(huà)出關(guān)于直線(xiàn)l對(duì)稱(chēng)的;
(2)連接OA,將OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn),畫(huà)出旋轉(zhuǎn)后的線(xiàn)段;
(3)在旋轉(zhuǎn)過(guò)程中,當(dāng)OA與有交點(diǎn)時(shí),旋轉(zhuǎn)角的取值范圍為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解九年級(jí)學(xué)生2020年適應(yīng)性考試數(shù)學(xué)成績(jī),現(xiàn)從九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生的適應(yīng)性考試數(shù)學(xué)成績(jī),按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如圖所示不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:
(1)此次抽查的學(xué)生人數(shù)為 ;
(2)把條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校九年級(jí)有學(xué)生1200人.請(qǐng)估計(jì)在這次適應(yīng)性考試中達(dá)到B等級(jí)以上(含B等級(jí))的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠(chǎng)為了檢驗(yàn)甲、乙兩車(chē)間生產(chǎn)的同一款新產(chǎn)品的合格情況(尺寸范圍為 的產(chǎn)品為合格),隨機(jī)各抽取了 個(gè)樣品進(jìn)行檢測(cè),過(guò)程如下: 收集數(shù)據(jù)(單位:):
甲車(chē)間:
乙車(chē)間:
整理數(shù)據(jù)(表 1):
分析數(shù)據(jù)(表 2):
應(yīng)用數(shù)據(jù):
(1)直接寫(xiě)出表 2 中的 , ;
(2)估計(jì)甲車(chē)間生產(chǎn)的 個(gè)該款新產(chǎn)品中合格產(chǎn)品有多少個(gè)?
(3)結(jié)合上述數(shù)據(jù)信息,請(qǐng)判斷哪個(gè)車(chē)間生產(chǎn)的新產(chǎn)品更好,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】折紙是一種許多人熟悉的活動(dòng).近些年,經(jīng)過(guò)許多人的努力,已經(jīng)找到了多種將正方形折紙的一邊三等分的精確折法,下面探討其中的一種折法:
(綜合與實(shí)踐)
操作一:如圖1,將正方形紙片ABCD對(duì)折,使點(diǎn)A與點(diǎn)D重合,點(diǎn)B與點(diǎn)C重合,再將正方形紙片ABCD展開(kāi),得到折痕MN;
操作二:如圖2,將正方形紙片ABCD的右上角沿MC折疊,得到點(diǎn)D的對(duì)應(yīng)的點(diǎn)為D′;
操作三:如圖3,將正方形紙片ABCD的左上角沿MD′折疊再展開(kāi),折痕MD′與邊AB交于點(diǎn)P;
(問(wèn)題解決)
請(qǐng)?jiān)趫D3中解決下列問(wèn)題:
(1)求證:BP=D′P;
(2)AP:BP= ;
(拓展探究)
(3)在圖3的基礎(chǔ)上,將正方形紙片ABCD的左下角沿CD′折疊再展開(kāi),折痕CD′與邊AB交于點(diǎn)Q.再將正方形紙片ABCD過(guò)點(diǎn)D′折疊,使點(diǎn)A落在AD邊上,點(diǎn)B落在BC邊上,然后再將正方形紙片ABCD展開(kāi),折痕EF與邊AD交于點(diǎn)E,與邊BC交于點(diǎn)F,如圖4.試探究:點(diǎn)Q與點(diǎn)E分別是邊AB,AD的幾等分點(diǎn)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com