A. | 3 | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | 6 |
分析 首先連接AC,交BD于點(diǎn)O,連接CM,則CM與BD交于點(diǎn)P,此時(shí)PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等邊三角形,BD垂直平分AC,繼而可得CM⊥AD,則可求得CM的值,繼而求得PA+PM的最小值.
解答 解:連接AC,交BD于點(diǎn)O,連接CM,則CM與BD交于點(diǎn)P,此時(shí)PA+PM的值最小,
∵在菱形ABCD中,AB=6,∠ABC=60°,
∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,
∴△ACD是等邊三角形,PA=PC,
∵M(jìn)為AD中點(diǎn),
∴DM=$\frac{1}{2}$AD=3,CM⊥AD,
∴CM=$\sqrt{C{D}^{2}-D{M}^{2}}$=3$\sqrt{3}$,
∴PA+PM=PC+PM=CM=3$\sqrt{3}$.
故選C.
點(diǎn)評(píng) 此題考查了最短路徑問題、等邊三角形的判定與性質(zhì)、勾股定理以及菱形的性質(zhì).注意準(zhǔn)確找到點(diǎn)P的位置是解此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 四個(gè)角都相等 | B. | 對(duì)角線互相平分 | C. | 對(duì)角線相等 | D. | 對(duì)角線平分對(duì)角 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4個(gè) | B. | 3個(gè) | C. | 2個(gè) | D. | 1個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com