【題目】中,于點(diǎn)H,點(diǎn)DAH上,且,連接BD

如圖1,將繞點(diǎn)H旋轉(zhuǎn),得到點(diǎn)B、D分別與點(diǎn)E、F對應(yīng),連接AE,當(dāng)點(diǎn)F落在AC上時(shí)不與C重合,求AE的長;

如圖2,是由繞點(diǎn)H逆時(shí)針旋轉(zhuǎn)得到的,射線CFAE相交于點(diǎn)G,連接GH,試探究線段GHEF之間滿足的等量關(guān)系,并說明理由.

【答案】(1)證明見解析;(2)(I)AE=;(II).

【解析】

1)先根據(jù)tanC3,求出AH3CH1,然后根據(jù)△EHA∽△FHC,得到,HP3AP,AE2AP,最后用勾股定理即可;

2)先判斷出△AGQ∽△CHQ,得到,然后判斷出△AQC∽△GQH,用相似比即可.

(1)如圖,

Rt△AHC中,

∵tanC3

3,

設(shè)CHx

∴BHAH3x,

∵BC4

∴3x+x4,

∴x1,

∴AH3,CH1,

由旋轉(zhuǎn)知,∠EHF∠BHD∠AHC90°,EHAH3CHDHFH,

∴∠EHF+∠AHF∠AHC+∠AHF,

∴∠EHA∠FHC=1,

∴△EHA∽△FHC,

∴∠EAH∠C,

∴tan∠EAHtanC3,

過點(diǎn)HHP⊥AE,

∴HP3AP,AE2AP,

Rt△AHP中,AP2+HP2AH2

∴AP2+(3AP)29,

∴AP

∴AE;

(2)如圖1

∵△EHF是由△BHD繞點(diǎn)H逆時(shí)針旋轉(zhuǎn)30°得到,

∴HDHF,∠AHF30°

∴∠CHF90°+30°120°

(1)有,△AEH△FHC都為等腰三角形,

∴∠GAH∠HCG30°,

∴CG⊥AE,

點(diǎn)C,H,G,A四點(diǎn)共圓,

∴∠CGH∠CAH

設(shè)CGAH交于點(diǎn)Q,

∵∠AQC∠GQH,

∴△AQC∽△GQH,

,

∵△EHF是由△BHD繞點(diǎn)H逆時(shí)針旋轉(zhuǎn)30°得到,

∴EFBD

(1)知,BDAC

∴EFAC

2,

即:EF2HG,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已如拋物線y=-x2+3x+m,其中m為常數(shù)

I)當(dāng)拋物線經(jīng)過點(diǎn)(35)時(shí),求該拋物線的解析式。

II)當(dāng)拋物線與直線y=x+3m只有一個(gè)交點(diǎn)時(shí),求該拋物線的解析式。

III)當(dāng)0x4時(shí),試通過m的取值范圍討論拋物線與直線y=x+2的公共點(diǎn)的個(gè)數(shù)的情況

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明坐于堤邊垂釣,如圖,河堤的坡角為,長為米,釣竿的傾斜角是,其長為米,若與釣魚線的夾角為,求浮漂與河堤下端之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對非負(fù)實(shí)數(shù)x“四舍五入到個(gè)位的值記為[x].即當(dāng)n為非負(fù)整數(shù)時(shí),若n≤xn+,則[x]n.如:[2.9]3;[2.4]2……根據(jù)以上材料,解決下列問題:

1)填空[1.8]   ,[]   ;

2)若[2x+1]4,則x的取值范圍是   ;

3)求滿足[x]x1的所有非負(fù)實(shí)數(shù)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)“2015揚(yáng)州鑒真國際半程馬拉松”的賽事共有三項(xiàng):A、“半程馬拉松”、B、“10公里”、C、“迷你馬拉松”。小明和小剛參加了該項(xiàng)賽事的志愿者服務(wù)工作,組委會(huì)隨機(jī)將志愿者分配到三個(gè)項(xiàng)目組

(1)小明被分配到“迷你馬拉松”項(xiàng)目組的概率為

(2)求小明和小剛被分配到不同項(xiàng)目組的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中基本了解部分所對應(yīng)扇形的圓心角為_______°;

(2)請補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該中學(xué)共有學(xué)生1800人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對校園安全知識(shí) 達(dá)到了解基本了解程度的總?cè)藬?shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把兩個(gè)全等的直角三角板ABCEFG疊放在一起,使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合,其中∠B=∠F30°,斜邊ABEF長均為4.

(1)當(dāng) EGAC于點(diǎn)KGFBC于點(diǎn)H時(shí)(如圖①),求GHGK的值.

(2) 現(xiàn)將三角板EFG由圖①所示的位置繞O點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角α滿足條件:α<30°(如圖②),EGAC于點(diǎn)K ,GFBC于點(diǎn)H,GHGK的值是否改變?證明你發(fā)現(xiàn)的結(jié)論;

3)三角板EFG由圖①所示的位置繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)一周,是否存在某位置使BFG是等腰三角形,若存在,請直接寫出相應(yīng)的旋轉(zhuǎn)角α(精確到0.1°);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某茶葉銷售商計(jì)劃將m罐茶葉按甲、乙兩種禮品盒包裝出售,其中甲種禮品盒每盒裝4罐,每盒售價(jià)240元;乙種禮品盒每盒裝6罐,每盒售價(jià)300元,恰好全部裝完.已知每罐茶葉的成本價(jià)為30元,設(shè)甲種禮品盒的數(shù)量為x盒,乙種禮品盒的數(shù)量為y.

(1)當(dāng)m=120時(shí).

①求y關(guān)于x的函數(shù)關(guān)系式.

②若120罐茶葉全部售出后的總利潤不低于3000元,則甲種禮品盒的數(shù)量至少要多少盒?

(2)m罐茶葉全部售出后平均每罐的利潤恰好為24元,且甲、乙兩種禮品盒的數(shù)量和不超過69盒,求m的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是的中點(diǎn),CE⊥AB于點(diǎn)E,過點(diǎn)D的切線交EC的延長線于點(diǎn)G,連接AD,分別交CE,CB于點(diǎn)P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心,其中結(jié)論正確的是________(只需填寫序號).

查看答案和解析>>

同步練習(xí)冊答案