精英家教網 > 初中數學 > 題目詳情

【題目】如圖,ACO的直徑,弦BDAOE,連接BC,過點OOFBCF,若BD16cmAE4cm

1)求O的半徑;

2)求OF的長.

【答案】(1)10;(2)OF2

【解析】

1)連接OB,設半徑為R, OER4,再由垂徑定理求得BE,根據勾股定理求出R即可;(2)根據勾股定理求得BC,證明△CFO∽△CEB,根據相似三角形的性質列出比例式,計算即可

解:(1)連結OB,設半徑為R, OER4

AC⊙O的直徑,弦BDACE

BEDE8

Rt△BOE , OE2BE2OB2

∴ (R4)282R2

解得R10

(2) 根據勾股定理得 BC8

可證COF∽△CBE

OF2

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】根據下列條件求二次函數解析式

1)已知一個二次函數的圖象經過了點A0,﹣1),B10),C(﹣1,2);

2)已知拋物線頂點P(﹣1,﹣8),且過點A0,﹣6);

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知⊙O經過四邊形ABCDB、D兩點,并與四條邊分別交于點E、FG、H,且

1)如圖①,連接BD,若BD是⊙O的直徑,求證:∠A=∠C;

2)如圖②,若的度數為θ,∠Aα,∠Cβ,請直接寫出θ、αβ之間的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】平移拋物線,下列哪種平移方法不能使平移后的拋物線經過原點( )

A.向左平移2個單位B.向右平移5個單位

C.向上平移10個單位D.向下平移20個單位

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線 軸的兩個交點間的距離為2

1)若此拋物線的對稱軸為直線 ,請判斷點(3,3)是否在此拋物線上?

2)若此拋物線的頂點為(S,t),請證明

3)當時,求的取值范圍

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點,且ODBC,ODAC交于點E

1)若∠B=64°,求∠CAD的度數;

2)若AB=10,DE=2,求AC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.

(1)若O、C、A在一條直線上,連AD、BC,分別取AD、BC的中點M、N如圖(1),求出線段MN、AC之間的數量關系;

(2)若將△OCD繞O旋轉到如圖(2)的位置,連AD、BC,取BC的中點M,請?zhí)骄烤段OM、AD之間的關系,并證明你的結論;

(3)若將△OCD由圖(1)的位置繞O順時針旋轉角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,請直接寫出此時△ABC的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,D是等邊三角形ABC內一點,將線段AD繞點A順時針旋轉60°,得到線段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖所示.在△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B1cm/s的速度移動,點Q從點B開始沿BC邊向點C2cm/s的速度移動,當其中一點達到終點后,另外一點也隨之停止運動.

1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2

2)如果P,Q分別從A,B同時出發(fā),那么幾秒后,PQ的長度等于5cm

3)在(1)中,△PQB的面積能否等于7cm2?說明理由.

查看答案和解析>>

同步練習冊答案