精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB是半圓O的直徑,點P是半圓上不與點A,B重合的動點,PCAB,點MOP中點.

1)求證:四邊形OBCP是平行四邊形;

2)填空:

①當∠BOP   時,四邊形AOCP是菱形;

②連接BP,當∠ABP   時,PC是⊙O的切線.

【答案】(1)見解析;(2)120°;②45°

【解析】

1)由AAS證明CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出結論;
2)①證出OA=OP=PA,得出AOP是等邊三角形,∠A=AOP=60°,得出∠BOP=120°即可;
②由切線的性質和平行線的性質得出∠BOP=90°,由等腰三角形的性質得出∠ABP=OPB=45°即可.

1)證明:∵PCAB,

∴∠PCM=∠OAM,∠CPM=∠AOM

∵點MOP的中點,

OMPM,在CPMAOM中,

,

∴△CPM≌△AOMAAS),

PCOA

AB是半圓O的直徑,

OAOB,

PCOB

PCAB

∴四邊形OBCP是平行四邊形.

2)解:①∵四邊形AOCP是菱形,

OAPA,

OAOP,

OAOPPA,

∴△AOP是等邊三角形,

∴∠A=∠AOP60°

∴∠BOP120°;

故答案為:120°

②∵PC是⊙O的切線,

OPPC,∠OPC90°

PCAB,

∴∠BOP90°

OPOB,

∴△OBP是等腰直角三角形,

∴∠ABP=∠OPB45°,

故答案為:45°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】《國家學生體質健康標準》規(guī)定:體質測試成績達到90.0分及以上的為優(yōu)秀;達到80.0分至89.9分的為良好;達到60.0分至79.9分的為及格;59.9分及以下為不及格,某校為了了解九年級學生體質健康狀況,從該校九年級學生中隨機抽取了10%的學生進行體質測試,測試結果如下面的統計表和扇形統計圖所示。

各等級學生平均分統計表

等級

優(yōu)秀

良好

及格

不及格

平均分

92.1

85.0

69.2

41.3

各等級學生人數分布扇形統計圖

1)扇形統計圖中不及格所占的百分比是  ;

2)計算所抽取的學生的測試成績的平均分;

3)若所抽取的學生中所有不及格等級學生的總分恰好等于某一個良好等級學生的分數,請估計該九年級學生中約有多少人達到優(yōu)秀等級。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,且AO4,點C在半圓上,OCAB,垂足為點O,P為半圓上任意一點過P點作PEOC于點E,設OPE的內心為M,連接OM

1)求∠OMP的度數;

2)隨著點P在半圓上位置的改變,∠CMO的大小是否改變,說明理由;

3)當點P在半圓上從點B運動到點A時,直接寫出內心M所經過的路徑長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知三角形紙片△ABC和△DEF重合在一起,ABAC,DEDF,△ABC≌△DEF.數學實驗課上,張老師讓同學們用這兩張紙片進行如下操作:

(1)(操作探究1)保持△ABC不動,將△DEF沿射線BC方向平移至圖2所示位置,通過度量發(fā)現BECE12,則SCGESCAB   ;

(2)(操作探究2)保持△ABC不動,將△DEF通過一次全等變換(平移、旋轉或翻折后和△ABC拼成以BC為一條對角線的菱形,請用語言描述你的全等變換過程.

(3)(操作探究3)將兩個三角形按圖3所示放置:點C與點F重合,ABDE.保持△ABC不動,將△DEF沿射線DA方向平移.若AB13,BC10,設△DEF平移的距離為m

m0時,連接AD、BE,判斷四邊形ABED的形狀并說明理由;

在平移的過程中,四邊形ABED能否成為正方形?若能,請求出m的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】設二次函數、是實數).

⑴甲求得當時,;當時,,乙求得當時,.若甲求得的結果都正確,你認為乙求得的結果正確嗎?說明理由;

⑵寫出二次函數的對稱軸,并求出該函數的最小值(用含、的代數式表示);

⑶已知二次函數的圖像經過,兩點(m、n是實數),當時,求證:.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點P為某個封閉圖形邊界上的一定點,動點M從點P出發(fā),沿其邊界順時針勻速運動一周,設點M的運動時間為x,線段PM的長度為y,表示yx的函數圖象大致如圖所示,則該封閉圖形可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,某教學活動小組選定測量小山上方某信號塔PQ的高度,他們在A處測得信號塔頂端P的仰角為45°,信號塔低端Q的仰角為31°,沿水平地面向前走100米到處,測得信號塔頂端P的仰角為68°.求信號塔PQ的高度.(結果精確到0.1米.參考數據:sin68°≈ 0.93,cos68° ≈ 0.37,tan68° ≈ 2.48,tan31° ≈ 0.60,sin31° ≈ 0.52,cos31°≈0.86)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 某校為了解九年級男同學的體育考試準備情況,隨機抽取部分男同學進行了1000米跑測試.按照成績分為優(yōu)秀、良好、合格與不合格四個等級.學校繪制了如下不完整的統計圖.

(1)根據給出的信息,補全兩幅統計圖;

(2)該校九年級有600名男生,請估計成績未達到良好有多少名?

(3)某班甲、乙兩位成績優(yōu)秀的同學被選中參加即將舉行的學校運動會1000米比賽,預賽分為A、B、C三組進行,選手由抽簽確定分組.甲、乙兩人恰好分在同一組的概率是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,線段AB的兩個端點A02),B1,0),點C為線段AB的中點.將線段BA繞點B按順時針方向旋轉90°得到線段BD,連結CDAD.點P是直線BD上的一個動點.

1)求點D的坐標和直線BD的解析式;

2)當∠PCD=∠ADC時,求點P的坐標;

3)若點Q是經過點B,點D的拋物線yax2+bx+2上的一個動點,請你探索:是否存在這樣的點Q,使得以點P、點Q、點D為頂點的三角形與△ACD相似.若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案