【題目】某校為了解學(xué)生零用錢(qián)支出情況,從七、八、九年級(jí)800名學(xué)生中隨機(jī)抽取部分學(xué)生,對(duì)他們今年5月份的零用錢(qián)支出情況進(jìn)行調(diào)查統(tǒng)計(jì),并繪制成如下統(tǒng)計(jì)圖表:
組別 | 零用錢(qián)支出x(單位:元) | 頻數(shù)(人數(shù)) | 頻率 | |
節(jié)儉型 | 一 | x<20 | m | 0.05 |
二 | 20≤x<30 | 4 | a | |
富足型 | 三 | 30≤x<40 | n | 0.45 |
四 | 40≤x<50 | 12 | b | |
奢侈型 | 五 | x≥50 | 4 | c |
合計(jì) | 1 |
(1)表中a+b+c= ;m= ;本次調(diào)查共隨機(jī)抽取了 名同學(xué);
(2)在扇形統(tǒng)計(jì)圖中,“富足型”對(duì)應(yīng)的扇形的圓心角的度數(shù)是 ;
(3)估計(jì)今年5月份全校零花錢(qián)支出在30≤x<40范圍內(nèi)的學(xué)生人數(shù);
(4)在抽樣的“奢侈型”學(xué)生中,有2名女生和2名男生.學(xué)校團(tuán)委計(jì)劃從中隨機(jī)抽取2名同學(xué)參加“綠苗理財(cái)計(jì)劃”活動(dòng),請(qǐng)運(yùn)用樹(shù)狀圖或者列表說(shuō)明恰好抽到一男一女的概率.
【答案】(1)0.5,2,40;(2)162°;(3)120人;(4)
【解析】
(1)由x<10的人數(shù)及其頻率可得總?cè)藬?shù),總?cè)藬?shù)乘以20≤x<40的百分比,再減去20≤x<30的人數(shù)即可得m的值,同理計(jì)算出n的值;
(2)根據(jù)題意求得n=360°×“30≤x<40“和40≤x<50范圍的學(xué)生人數(shù)對(duì)應(yīng)比例即可得到結(jié)論;
(3)總?cè)藬?shù)乘以“30≤x<40范圍的學(xué)生人數(shù)對(duì)應(yīng)比例即可得到結(jié)論;
(4)列表得出所有等可能結(jié)果數(shù),再利用概率公式計(jì)算可得.
解:(1)表中a+b+c=1﹣(0.05+0.45)=0.5;
本次調(diào)查的總?cè)藬?shù)為(4+12+4)÷0.5=40(人),
m=40×0.05=2,
故答案為:0.5,2,40;
(2)n=40×0.45=6,
∴“富足型”對(duì)應(yīng)的扇形的圓心角的度數(shù)是360°×=162°;
故答案為:162°;
(3)估計(jì)該校今年5月份零用錢(qián)支出在“30≤x<40范圍的學(xué)生人數(shù)約為800×=120(人);
(4)畫(huà)樹(shù)狀圖為:
共有12種等可能的結(jié)果數(shù),其中抽取的兩人恰好是一名男生和一名女生結(jié)果數(shù)為8,
所以抽取的兩人恰好是一名男生和一名女生概率==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在⊙O中按如下步驟作圖:
(1)作⊙O的直徑AD;
(2)以點(diǎn)D為圓心,DO長(zhǎng)為半徑畫(huà)弧,交⊙O于B,C兩點(diǎn);
(3)連接DB,DC,AB,AC,BC.
根據(jù)以上作圖過(guò)程及所作圖形,下列四個(gè)結(jié)論中錯(cuò)誤的是( 。
A.∠ABD=90°B.∠BAD=∠CBDC.AD⊥BCD.AC=2CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的周長(zhǎng)是28cm,且AB比BC長(zhǎng)2cm.若點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度沿A→D→C方向勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),以2cm/s的速度沿A→B→C方向勻速運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)點(diǎn)C時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).若設(shè)運(yùn)動(dòng)時(shí)間為t(s),△APQ的面積為S(cm2),則S(cm2)與t(s)之間的函數(shù)圖象大致是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A、B的坐標(biāo)分別為(6,0),(6,8).動(dòng)點(diǎn)M、N分別從O、B同時(shí)出發(fā),以每秒1個(gè)單位的速度運(yùn)動(dòng).其中,點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過(guò)點(diǎn)N作NP⊥BC,交AC于P,連接MP.已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了x秒.
(1)P點(diǎn)的坐標(biāo)為多少;(用含x的代數(shù)式表示)
(2)試求△MPA面積的最大值,并求此時(shí)x的值;
(3)請(qǐng)你探索:當(dāng)x為何值時(shí),△MPA是一個(gè)等腰三角形?你發(fā)現(xiàn)了幾種情況?寫(xiě)出你的研究成果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)為C,已知﹣2≤c≤﹣1,頂點(diǎn)坐標(biāo)為(1,n),則下列結(jié)論正確的是( 。
A.a+b>0
B.
C.對(duì)于任意實(shí)數(shù)m,不等式a+b>am2+bm恒成立
D.關(guān)于x的方程ax2+bx+c=n+1沒(méi)有實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著城際鐵路的開(kāi)通,從甲市到乙市的高鐵里程比快里程縮短了90千米,運(yùn)行時(shí)間減少了8小時(shí),已知甲市到乙市的普快列車(chē)?yán)锍虨?/span>1220千米,高鐵平均時(shí)速是普快平均時(shí)速的2.5倍.
(1)求高鐵列車(chē)的平均時(shí)速;
(2)若從甲市到乙市途經(jīng)丙市,且從甲市到丙市的高鐵里程為780千米.某日王老師要從甲市去丙市參加14:00召開(kāi)的會(huì)議,如果他買(mǎi)了當(dāng)日10:00從甲市到丙市的高鐵票,而且從丙市高鐵站到會(huì)議地點(diǎn)最多需要0.5小時(shí).試問(wèn)在高鐵列車(chē)準(zhǔn)點(diǎn)到達(dá)的情況下,王老師能否在開(kāi)會(huì)之前趕到會(huì)議地點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)與正比例函數(shù)交于格點(diǎn)(網(wǎng)格線的交點(diǎn)).
(1)填空: ; ;
(2)當(dāng)時(shí),直接寫(xiě)出時(shí),的取值范圍;
(3)點(diǎn)是以格點(diǎn)為圓心, 為半徑的圓上一動(dòng)點(diǎn),連接取的中點(diǎn)試確定線段的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三位女同學(xué)競(jìng)選學(xué)校即將組織的“中國(guó)夢(mèng),我的夢(mèng)”文藝演出女主持人,它們的筆試成績(jī)和口試成績(jī)、形象得分,分別如下:
筆試 | |||
口試 | |||
形象 | |||
平均分 |
(1)① ;
②在表格中的個(gè)數(shù)的中位數(shù)是 ,眾數(shù)是
(2)經(jīng)學(xué)校研究決定,在兩位同學(xué)中選一位.評(píng)比方法:按筆試成績(jī):口試成績(jī):形象得分進(jìn)行計(jì)算,得分最高的同學(xué)為本次文藝演出的女主持人.請(qǐng)你算一算哪位同學(xué)最后被選為本次文藝演出的女主持人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com