【題目】在一次探究性學(xué)習(xí)課中,李老師設(shè)計了如下數(shù)表:

n

2

3

4

5

a

22﹣1

32﹣1

42﹣1

52﹣1

b

4

6

8

10

c

22+1

32+1

42+1

52+1

(1)用含自然數(shù)nn>1)的代數(shù)式表示:a,b,c

(2)當(dāng)c=101時,求n的值;

(3)用等式表示ab、c之間的數(shù)量關(guān)系

【答案】(1)an2﹣1,b=2n,cn2+1;(2)n=10;(3b2=2(a+c)(答案不唯一).

【解析】

(1)探究規(guī)律后,利用規(guī)律即可解決問題;

(2)根據(jù)規(guī)律得到方程+1=101,解方程即可求解;

(3)觀察發(fā)現(xiàn)規(guī)律,由此即可解決問題.

(1)觀察表格總結(jié)規(guī)律,an2﹣1,b=2n,cn2+1;

(2)依題意有n2+1=101,

n2=100,n=±10,

由于n>1,

所以n=10;

(3)答案不唯一,如:a2+b2c2;如:b2=2(a+c).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠E∠F90°,∠B∠C,AEAF.有以下結(jié)論:①EMFN;②CDDN;③∠FAN∠EAM;④△ACN≌△ABM.其中正確的有( ).

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,Rt△AOB的兩條直角邊OA、OB分別在x軸和y軸上,OA=3,OB=4.把△AOB繞點A順時針旋轉(zhuǎn)120°,得到△ADC.邊OB上的一點M旋轉(zhuǎn)后的對應(yīng)點為M′,當(dāng)AM′+DM取得最小值時,點M的坐標(biāo)為( )

A.(0,
B.(0,
C.(0,
D.(0,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=c,AC=b.AD△ABC的角平分線,DE⊥ABE,DF⊥ACF,EFAD相交于O,已知△ADC的面積為1.

(1)證明:DE=DF;

(2)試探究線段EFAD是否垂直?并說明理由;

(3)若△BDE的面積是△CDF的面積2倍.試求四邊形AEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,交AC邊于點E.過點D作⊙O的切線,交AC于點F,交AB的延長線于點G,連接DE.
(1)求證:BD=CD;
(2)若∠G=40°,求∠AED的度數(shù).
(3)若BG=6,CF=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2﹣2ax﹣3a(a>0)與x軸交于A、B兩點(點A在點B左側(cè)),經(jīng)過點A的直線l:y=kx+b與y軸交于點C,與拋物線的另一個交點為D,且CD=4AC.

(1)直接寫出點A的坐標(biāo),并用含a的式子表示直線l的函數(shù)表達式(其中k、b用含a的式子表示).
(2)點E為直線l下方拋物線上一點,當(dāng)△ADE的面積的最大值為 時,求拋物線的函數(shù)表達式;
(3)設(shè)點P是拋物線對稱軸上的一點,點Q在拋物線上,以點A、D、P、Q為頂點的四邊形能否為矩形?若能,求出點P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,AB=AC,BDACD,CEABE,BD,CE相交于F.

求證:AF平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,下列條件中,不能說明ABCD的是(  )

A. AOD90°

B. AOC=∠BOC

C. BOC+∠BOD180°

D. AOC+∠BOD180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點,點A的坐標(biāo)為(2,6),點B的坐標(biāo)為(n,1).
(1)求反比例函數(shù)與一次函數(shù)的表達式;
(2)點E為y軸上一個動點,若SAEB=10,求點E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案