【題目】如圖,已知AB為半圓O的直徑,P為半圓上的一個動點(不含端點),以OP、OB為一組鄰邊作POBQ,連接OQ、AP,設(shè)OQ、AP的中點分別為M、N,連接PM、ON.
(1)試判斷四邊形OMPN的形狀,并說明理由.
(2)若點P從點B出發(fā),以每秒15°的速度,繞點O在半圓上逆時針方向運動,設(shè)運動時間為ts.
①試求:當(dāng)t為何值時,四邊形OMPN的面積取得最大值?并判斷此時直線PQ與半圓O的位置關(guān)系(需說明理由);
②是否存在這樣的t,使得點Q落在半圓O內(nèi)?若存在,請直接寫出t的取值范圍;若不存在,請說明理由.
【答案】(1)四邊形OMPN為矩形,理由見解析;(2)①當(dāng)t=6秒時,四邊形OMPN面積最大,此時,PQ與半圓O相切.理由見解析;②當(dāng)8<t<12時,點Q在半圓O內(nèi).
【解析】
(1)先證四邊形PQOA為平行四邊形,再證四邊形OMPN為平行四邊形,根據(jù)等腰三角形三線合一,得ON⊥AP,進(jìn)而即可得到結(jié)論;
(2)①由題意得S矩形OMPN=S△AOP,從而得△AOP的AO邊上的高取得最大值,此時△AOP的面積取得最大值,進(jìn)而即可得到t的值,根據(jù)切線的判定定理,即可得到結(jié)論;②考慮兩個特殊情況:當(dāng)點Q在半圓O上時,當(dāng)點P與點A重合時,分別求出t的值,進(jìn)而即可得到答案.
(1)四邊形OMPN為矩形,理由如下:
∵四邊形POBQ為平行四邊形,
∴PQ∥OB,PQ=OB.
又∵OB=OA,
∴PQ=AO.
又∵PQ∥OA,
∴四邊形PQOA為平行四邊形,
∴PA∥QO,PA=QO.
又∵M、N分別為OQ、AP的中點,
∴OM=OQ,PN=AP,
∴OM=PN,
∴四邊形OMPN為平行四邊形.
∵OP=OA,N是AP的中點,
∴ON⊥AP,即∠ONP=90°,
∴四邊形OMPN為矩形;
(2)①∵四邊形OMPN為矩形,
∴S矩形OMPN=ON·NP=ON·AP,即S矩形OMPN=S△AOP.
∵△AOP的底AO為定值,
∴當(dāng)P旋轉(zhuǎn)運動90°(運動至最高點)時,△AOP的AO邊上的高取得最大值,此時△AOP的面積取得最大值,
∴t=90÷15=6秒,
∴當(dāng)t=6秒時,四邊形OMPN面積最大.
此時,PQ與半圓O相切.理由如下:
∵此時∠POB=90°,PQ//OB,
∴∠OPQ=90°,
∴PQ與半圓O相切;
②當(dāng)點Q在半圓O上時,
∵四邊形POBQ為平行四邊形,且OB=OP,
∴四邊形POBQ為菱形,
∴OB=BQ=OQ=OP=PQ,
∴∠POQ=∠BOQ=60°,即:∠BOP=120°,
∴此時,t=120°÷15°=8秒,
當(dāng)點P與點A重合時,t=180°÷15°=12秒,
綜上所述:當(dāng)8<t<12時,點Q在半圓O內(nèi).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個草莓采摘園為吸引顧客,在草莓銷售價格相同的基礎(chǔ)上分別推出優(yōu)惠方案,甲園:顧客進(jìn)園需購買門票,采摘的草莓按六折優(yōu)惠.乙園:顧客進(jìn)園免門票,采摘草莓超過一定數(shù)量后,超過的部分打折銷售.活動期間,某顧客的草莓采摘量為x kg,若在甲園采摘需總費用y1元,若在乙園采摘需總費用y2元, y1,y2與x之間的函數(shù)圖象如圖所示,則下列說法中錯誤的是( )
A.甲園的門票費用是60元
B.草莓優(yōu)惠前的銷售價格是40元/kg
C.乙園超過5 kg后,超過的部分價格優(yōu)惠是打五折
D.若顧客采摘12 kg草莓,那么到甲園或乙園的總費用相同
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,以為直徑的,交于點,且交直線于點,連接.
如圖1,求證:;
如圖2,為鈍角時,過點作于點求證:;
如圖3,在的條件下,在∠BDF的內(nèi)部作,使分別交于點交于點,若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑是2,點A、B、C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為( 。
A. π﹣2 B. π﹣ C. π﹣2 D. π﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求此反比例函數(shù)的表達(dá)式;
(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七巧板是我國祖先的一項卓越創(chuàng)造,如圖正方形ABCD可以制作一副七巧板,現(xiàn)將這副七巧板拼成如圖2的“風(fēng)車”造型(內(nèi)部有一塊空心),連結(jié)最外圍的風(fēng)車頂點M、N、P、Q得到一個四邊形MNPQ,則正方形ABCD與四邊形MNPQ的面積之比為( )
A.5:8B.3:5C.8:13D.25:49
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,Rt△ABC中,點D,E分別為直角邊AC,BC上的點,若滿足AD2+BE2=DE2,則稱DE為R△ABC的“完美分割線”.顯然,當(dāng)DE為△ABC的中位線時,DE是△ABC的一條完美分割線.
(1)如圖1,AB=10,cosA=,AD=3,若DE為完美分割線,則BE的長是 .
(2)如圖2,對AC邊上的點D,在Rt△ABC中的斜邊AB上取點P,使得DP=DA,過點P畫PE⊥PD交BC于點E,連結(jié)DE,求證:DE是直角△ABC的完美分割線.
(3)如圖3,在Rt△ABC中,AC=10,BC=5,DE是其完美分割線,點P是斜邊AB的中點,連結(jié)PD、PE,求cos∠PDE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)初三年級積極推進(jìn)走班制教學(xué).為了了解一段時間以來,“至善班”的學(xué)習(xí)效 果,年級組織了多次定時測試,現(xiàn)隨機(jī)選取甲、乙兩個“至善班”,從中各抽取名同學(xué)在某一次定時測試中的數(shù)學(xué)成績,其結(jié)果記錄如下:
收集數(shù)據(jù):
“至善班”甲班的名同學(xué)的數(shù)學(xué)成績統(tǒng)計(滿分為 100 分)(單位:分)
“至善班”乙班的名同學(xué)的數(shù)學(xué)成績統(tǒng)計(滿分為 100 分)(單位:分)
整理數(shù)據(jù):(成績得分用表示)
分?jǐn)?shù) 數(shù)量 班級 | |||||
甲班(人數(shù)) | 1 | 3 | 4 | 6 | 6 |
乙班(人數(shù)) | 1 | 1 | 8 | 6 | 4 |
分析數(shù)據(jù),并回答下列問題:
完成下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | |
甲班 | |||
乙班 |
在“至善班”甲班的扇形圖中, 成績在的扇形中,所對的圓心角的度數(shù)為 . 估計全部“至善班”的人中優(yōu)秀人數(shù)為 人.(分及以上為優(yōu)秀).
根據(jù)以上數(shù)據(jù),你認(rèn)為“至善班” 班(填“甲”或“乙”)所選取做樣本 的同學(xué)的學(xué)習(xí)效果更好一些,你所做判斷的理由是:
①
②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙O的半徑為r(r>0).給出如下定義:若平面上一點P到圓心O的距離d,滿足,則稱點P為⊙O的“隨心點”.
(1)當(dāng)⊙O的半徑r=2時,A(3,0),B(0,4),C(﹣,2),D(,﹣)中,⊙O的“隨心點”是_____;
(2)若點E(4,3)是⊙O的“隨心點”,求⊙O的半徑r的取值范圍;
(3)當(dāng)⊙O的半徑r=2時,直線y=x+b(b≠0)與x軸交于點M,與y軸交于點N,若線段MN上存在⊙O的“隨心點”,直接寫出b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com