【題目】近年來(lái),隨著我國(guó)科學(xué)技術(shù)的迅猛發(fā)展,很多行業(yè)已經(jīng)由“中國(guó)制造”升級(jí)為“中國(guó)創(chuàng)造”,高鐵事業(yè)是“中國(guó)創(chuàng)造”的典范,甲、乙兩個(gè)城市的火車站相距1280千米,加開(kāi)高鐵后,從甲站到乙站的運(yùn)行時(shí)間縮短了11個(gè)小時(shí),大大方便了人們出行,已知高鐵行駛速度是原來(lái)火車速度的3.2倍,求高鐵的行駛速度.
【答案】高鐵的行駛速度為256千米/時(shí).
【解析】
設(shè)原來(lái)火車的速度為x千米/時(shí),則高鐵的速度為3.2x千米/時(shí),根據(jù)時(shí)間=路程÷速度結(jié)合高鐵比原來(lái)的火車省11小時(shí),即可得出關(guān)于x的分式方程,解之即可得出結(jié)論.
設(shè)原來(lái)火車的速度為x千米/時(shí),則高鐵的速度為3.2x千米/時(shí),
根據(jù)題意得:,
解得:x=80,
經(jīng)檢驗(yàn),x=80是原分式方程的解,
∴3.2x=3.2×80=256.
答:高鐵的行駛速度為256千米/時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在矩形中,,點(diǎn)沿邊從點(diǎn)開(kāi)始向點(diǎn)以的速度移動(dòng),點(diǎn)沿邊從點(diǎn)開(kāi)始向點(diǎn)以的速度移動(dòng),如果點(diǎn)同時(shí)出發(fā),用表示移動(dòng)的時(shí)間().
(1)當(dāng)為何值時(shí),為等腰三角形?
(2)求四邊形的面積,并探索一個(gè)與計(jì)算結(jié)果有關(guān)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 1,射線 OC在∠AOB的內(nèi)部,圖中共有 3個(gè)角:∠AOB、∠AOC 和∠BOC,若其中有一個(gè)角的度數(shù)是另一個(gè)角度數(shù)的兩倍,則稱射線 OC是∠AOB的奇妙線.
(1)一個(gè)角的角平分線_______這個(gè)角的奇妙線.(填是或不是);
(2)如圖 2,若∠MPN=60°,射線 PQ繞點(diǎn) P從 PN位置開(kāi)始,以每秒 10°的速度逆時(shí)針旋轉(zhuǎn),當(dāng)∠QPN首次等于 180°時(shí)停止旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時(shí)間為 t(s).
① 當(dāng) t為何值時(shí),射線 PM是∠QPN 的奇妙線?
②若射線 PM 同時(shí)繞點(diǎn) P以每秒 5°的速度逆時(shí)針旋轉(zhuǎn),并與 PQ同時(shí)停止旋轉(zhuǎn).請(qǐng)求出當(dāng)射線 PQ是∠MPN的奇妙線時(shí) t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(探索新知)
如圖1,點(diǎn)在線段上,圖中共有3條線段:、和,若其中有一條線段的長(zhǎng)度是另一條線段長(zhǎng)度的兩倍,則稱點(diǎn)是線段的“二倍點(diǎn)”.
(1)①一條線段的中點(diǎn) 這條線段的“二倍點(diǎn)”;(填“是”或“不是”)
②若線段,是線段的“二倍點(diǎn)”,則 (寫(xiě)出所有結(jié)果)
(深入研究)
如圖2,若線段,點(diǎn)從點(diǎn)的位置開(kāi)始,以每秒2的速度向點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為秒.
(2)問(wèn)為何值時(shí),點(diǎn)是線段的“二倍點(diǎn)”;
(3)同時(shí)點(diǎn)從點(diǎn)的位置開(kāi)始,以每秒1的速度向點(diǎn)運(yùn)動(dòng),并與點(diǎn)同時(shí)停止.請(qǐng)直接寫(xiě)出點(diǎn)是線段的“二倍點(diǎn)”時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的對(duì)角線交于點(diǎn)O,下列哪組條件不能判斷四邊形ABCD是平行四邊形( ).
A. OA=OC,OB=OD B. ∠BAD=∠BCD,AB∥CD
C. AD∥BC,AD=BC D. AB=CD,AO=CO
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:(1)13+(-18)-(6-11)
(2)÷
(3)-14-×[2-(-3)2]
(4)a-2b-[-4a+(c+3b)]
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M,N分別是斜邊AB,DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD、MN.
(1)求證:△PMN為等腰直角三角形;
(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP,BD分別交于點(diǎn)G、H,請(qǐng)判斷①中的結(jié)論是否成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知ABCD中,AE⊥BC于點(diǎn)E,以點(diǎn)B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時(shí)針旋轉(zhuǎn),得到△BA′E′,連接DA′.若∠ADC=60°,∠ADA′=50°,則∠DA′E′的大小為( )
A. 130° B. 150° C. 160° D. 170°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤.通過(guò)調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤.為了保證每天至少售出260斤,張阿姨決定降價(jià)銷售.
(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?
(3)當(dāng)每斤的售價(jià)定為多少元時(shí),每天獲利最大?最大值為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com