【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD的頂點(diǎn)都在格點(diǎn)上,其中A點(diǎn)坐標(biāo)為(﹣2,﹣1),C點(diǎn)坐標(biāo)為(3,3).
(1)填空:點(diǎn)B到y軸的距離為 ,點(diǎn)B到直線AD的距離為 ;
(2)求四邊形ABCD的面積;
(3)點(diǎn)M在y軸上,當(dāng)△ADM的面積為12時(shí),請(qǐng)直接寫出點(diǎn)M的坐標(biāo).
【答案】(1)1,3;(2);(3)M(0,﹣5),(0,3).
【解析】
(1)根據(jù)圖形即可得到結(jié)論;
(2)根據(jù)矩形和三角形的面積公式即可得到結(jié)論;
(3)根據(jù)三角形的面積列方程即可得到結(jié)論.
解:(1)根據(jù)圖形可知,B(﹣1,2),
∴點(diǎn)B到y軸的距離為1,點(diǎn)B到直線AD的距離為3;
故答案為:1,3;
(2)四邊形ABCD的面積=6×4﹣×3×1﹣×4×1﹣×1×4-1=;
(3)設(shè)點(diǎn)M的坐標(biāo)(0,m),
∵△ADM的面積為12,
∴×6×|m+1|=12,
∴m=3或-5,
∴M(0,﹣5),(0,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市公交公司為應(yīng)對(duì)春運(yùn)期間的人流高峰,計(jì)劃購(gòu)買A、B兩種型號(hào)的公交車共10輛,若購(gòu)買A型公交車1輛,B型公交車2輛,共需400萬元;若購(gòu)買A型公交車2輛,B型公交車3輛,共需650萬元,
(1)試問該公交公司計(jì)劃購(gòu)買A型和B型公交車每輛各需多少萬元?
(2)若該公司預(yù)計(jì)在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購(gòu)買A型和B型公交車的總費(fèi)用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購(gòu)車方案?哪種購(gòu)車方案的總費(fèi)用W最少?最少總費(fèi)用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組進(jìn)行了探究活動(dòng).如圖,已知一架竹梯AB斜靠在墻角MON處,竹梯AB=13m,梯子底端離墻角的距離BO=5m.
(1)求這個(gè)梯子頂端A距地面有多高;
(2)如果梯子的頂端A下滑4 m到點(diǎn)C,那么梯子的底部B在水平方向上滑動(dòng)的距離BD=4 m嗎?為什么?
(3)亮亮在活動(dòng)中發(fā)現(xiàn)無論梯子怎么滑動(dòng),在滑動(dòng)的過程中梯子上總有一個(gè)定點(diǎn)到墻角O的距離始終是不變的定值,會(huì)思考問題的你能說出這個(gè)點(diǎn)并說明其中的道理嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2013年四川廣安8分)某商場(chǎng)籌集資金12.8萬元,一次性購(gòu)進(jìn)空調(diào)、彩電共30臺(tái).根據(jù)市場(chǎng)需要,這些空調(diào)、彩電可以全部銷售,全部銷售后利潤(rùn)不少于1.5萬元,其中空調(diào)、彩電的進(jìn)價(jià)和售價(jià)見表格.
空調(diào) | 彩電 | |
進(jìn)價(jià)(元/臺(tái)) | 5400 | 3500 |
售價(jià)(元/臺(tái)) | 6100 | 3900 |
設(shè)商場(chǎng)計(jì)劃購(gòu)進(jìn)空調(diào)x臺(tái),空調(diào)和彩電全部銷售后商場(chǎng)獲得的利潤(rùn)為y元.
(1)試寫出y與x的函數(shù)關(guān)系式;
(2)商場(chǎng)有哪幾種進(jìn)貨方案可供選擇?
(3)選擇哪種進(jìn)貨方案,商場(chǎng)獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于F,連接CF.
(1)求證:AD=AF;
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分別為邊AB、BC的中點(diǎn),連結(jié)DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD﹣DE運(yùn)動(dòng),到點(diǎn)E停止,點(diǎn)P在AD上以5cm/s的速度運(yùn)動(dòng),在DE上以1cm/s的速度運(yùn)動(dòng),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為_____cm.(用含t的代數(shù)式表示)
(2)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.
(3)如圖2,若點(diǎn)O在線段BC上,且CO=1,以點(diǎn)O為圓心,1cm長(zhǎng)為半徑作圓,當(dāng)點(diǎn)P開始運(yùn)動(dòng)時(shí),⊙O的半徑以0.2cm/s的速度開始不斷增大,當(dāng)⊙O與正方形PQMN的邊所在直線相切時(shí),求此時(shí)的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A. B在雙曲線y= (x>0)上,AC⊥x軸于C,BD⊥y軸于點(diǎn)D,AC與BD交于點(diǎn)P,P是AC的中點(diǎn).
(1)設(shè)A的橫坐標(biāo)為m,試用m、k表示B的坐標(biāo).
(2)試判斷四邊形ABCD的形狀,并說明理由.
(3)若△ABP的面積為3,求該雙曲線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是
A. “明天降雨的概率是80%”表示明天有80%的時(shí)間都在降雨
B. “拋一枚硬幣正面朝上的概率為”表示每拋2次就有一次正面朝上
C. “彩票中獎(jiǎng)的概率為1%”表示買100張彩票肯定會(huì)中獎(jiǎng)
D. “拋一枚正方體骰子,朝上的點(diǎn)數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點(diǎn)數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在附近
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)(+12)﹣(﹣7)+(﹣5)﹣(+30)
(2)
(3)﹣33×(﹣2)﹣12÷[(﹣3)﹣(﹣1)]
(4)(﹣)×(﹣3)3﹣0.25×(﹣3)×(﹣2)4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com