如圖,正方形OABC和正方形ADEF的頂點(diǎn)A,D,C在坐標(biāo)軸上,點(diǎn)F在AB上,點(diǎn)B,E在函數(shù)y=
1
x
(x>0)的圖象上,則E點(diǎn)的坐標(biāo)是
5
+1
2
,
5
-1
2
5
+1
2
,
5
-1
2
分析:設(shè)正方形ADEF的邊長(zhǎng)是a,則E的縱坐標(biāo)是a,則可以求得D的橫坐標(biāo),進(jìn)而求得A的橫坐標(biāo),得到B的坐標(biāo),根據(jù)E的坐標(biāo)滿足函數(shù)的解析式即可求得a的值,從而求得E的坐標(biāo).
解答:解:設(shè)正方形ADEF的邊長(zhǎng)是a,則E的縱坐標(biāo)是a,
把y=a代入y=
1
x
得:x=
1
a
,
則E的橫坐標(biāo),即D的橫坐標(biāo)是:
1
a
,
則A、B的橫坐標(biāo)是:
1
a
-a=
1-a2
a
,
∵四邊形ABCO是正方形,
∴OA=AB,則B的坐標(biāo)是:(
1-a2
a
,
1-a2
a
).
∵B是y=
1
x
上的點(diǎn).
1-a2
a
=
a
1-a2
,
解得:a=
5
-1
2

則E的橫坐標(biāo)是:
1
a
=
2
5
-1
=
5
+1
2

則E的坐標(biāo)是(
5
+1
2
,
5
-1
2
).
故答案是:(
5
+1
2
5
-1
2
).
點(diǎn)評(píng):本題考查了反比例函數(shù)的綜合應(yīng)用,以及正方形的性質(zhì),正確理解兩個(gè)正方形的關(guān)系是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形OABC的面積為16,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)B在函數(shù)y=
k
x
(k>0,x>0)的圖象上,點(diǎn)P(m,n)是函數(shù)y=
k
x
(k>0,x>0)的圖象上任意一點(diǎn),過(guò)點(diǎn)P分別作x軸、y軸精英家教網(wǎng)的垂線,垂足分別為E、F,并設(shè)矩形OEPF和正方形OABC不重合部分的面積為S.(提示:考慮點(diǎn)P在點(diǎn)B的左側(cè)或右側(cè)兩種情況)
(1)求B點(diǎn)坐標(biāo)和k的值;
(2)當(dāng)S=8時(shí),求點(diǎn)P的坐標(biāo);
(3)寫出S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形OABC、ADEF的頂點(diǎn)A,D,C在坐標(biāo)軸上,點(diǎn)F在AB上,點(diǎn)B、E在函數(shù)y=
4x
  (x>0)
的圖象上.
(1)求正方形OABC的面積;
(2)求E點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形OABC與正方形ODEF是位似圖形,O為位似中心,相似比為1:
2
,點(diǎn)A的坐標(biāo)為(1,0),則OD=
2
2
,點(diǎn)E的坐標(biāo)為
2
,
2
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形OABC的面積為4,點(diǎn)D為坐標(biāo)原點(diǎn),點(diǎn)B在函數(shù)y=
k
x
(k<0,x<0)的圖象上,點(diǎn)P(m,n)是函數(shù)y=
k
x
(k<0,x<0)的圖象上異于B的任意一點(diǎn),過(guò)點(diǎn)P分別作x軸、),軸的垂線,垂足分別為E、F.
(1)設(shè)矩形OEPF的面積為s1,求s1;
(2)從矩形DEPF的面積中減去其與正方形OABC重合的面積,剩余面積記為s2.寫出s2與m的函數(shù)關(guān)系式,并標(biāo)明m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案