如圖,等腰△ABC中,AB=AC=13,BC=10,以AC為直徑作⊙O交BC于點D,交AB于點G,過點D作⊙O的切線交AB于點E,交AC的延長線與點F.
(1)求證:EF⊥AB;
(2)求cos∠F的值.
證明:(1)連接OD,…(1分)

∵OC=OD,
∴∠ODC=∠OCD,
又∵AB=AC,
∴∠OCD=∠B,
∴∠ODC=∠B,
∴ODAB,…(2分)
∵ED是⊙O的切線,OD是⊙O的半徑,
∴OD⊥EF,
∴AB⊥EF;…(3分)
(2)連接AD、CG,
∵AD是⊙O的直徑,
∴∠ADC=∠AGC=90°,
∵AB⊥EF,
∴DECG,
∴∠F=∠GCA,…(4分)
∵AB=AC,
∴DC=
1
2
BC=5,
Rt△ADC中,AD=
AC2-CD2
=12,…(5分)
∵S△ABC=
1
2
AD•BC=
1
2
AB•CG,
∴CG=
AD•BC
AB
=
120
13
,…(6分)
在Rt△CGA中,cos∠GCA=
GC
AC
=
120
169
,
∴cos∠F=
120
169
.…(7分)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

若BC為圓O的直徑,A為⊙O上一點,AD⊥BC于D,EA切⊙O于A,交BC延長線于E,∠EAD=54°,則∠DAC的度數(shù)=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O的割線PB、PD分別交⊙O于A、B、C、D.已知PA=4,PB=10,PD=8,則PC=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知AB是⊙O的直徑,AP是⊙O的切線,A是切點,BP與⊙O交于點C.
(1)如圖①,若AB=2,∠P=30°,求AP的長(結果保留根號);
(2)如圖②,若D為AP的中點,求證:直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,P為⊙O外一點,PA、PB分別切⊙O于A、B,CD切⊙O于點E,分別交PA、PB于點C、D,若PA=5,則△PCD的周長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中,∠C=90度.以BC為直徑作⊙O與斜邊AB交于點D,且AD=3.2cm,BD=1.8cm,則AC=______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O1和⊙O2外切于點P,內公切線PC與外公切線AB(A、B分別是⊙O1和⊙O2上的切點)相交于點C,已知⊙O1和⊙O2的半徑分別為3和4,則PC的長等于______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一個鋼管放在V形架內,如圖是其截面圖,O為鋼管的圓心.如果鋼管的半徑為25cm,∠MPN=60°,則OP=( 。
A.50cmB.25
3
cm
C.
50
3
3
cm
D.50
3
cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直尺、三角尺都和圓O相切,AB=8cm.求圓O的直徑.

查看答案和解析>>

同步練習冊答案