精英家教網 > 初中數學 > 題目詳情
如圖,在⊙O中,弦AB與CD相交于點P,連接AC、DB.
(1)求證:△PAC∽△PDB;
(2)當為何值時,=4?

【答案】分析:(1)利用圓周角定理的推論,同弧所對的圓周角相等,可以得到三角形的相似.
(2)利用面積比等于相似比的平方求解即可.
解答:(1)證明:∵∠A=∠D,∠C=∠B,
∴△PAC∽△PDB;  
(2)解:由(1)△PAC∽△PDB,得,即=4,
=2,
∴當=2時,=4.
點評:此題考查了圓周角定理的推論和相似三角形的判定以及相似三角形的性質:相似三角形面積的比等于相似比的平方.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知:如圖,在⊙O中,弦AD=BC.求證:AB=CD.

查看答案和解析>>

科目:初中數學 來源: 題型:

4、如圖,在⊙O中,弦BC∥半徑OA,AC與OB相交于M,∠C=20°,則∠AMB的度數為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在⊙M中,弦AB所對的圓心角為120度,已知圓的半徑為2cm,并建立如圖所示的直角坐精英家教網標系.
(1)求圓心M的坐標;
(2)求經過A,B,C三點的拋物線的解析式;
(3)設點P是⊙M上的一個動點,當△PAB為Rt△PAB時,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在⊙O中,弦AB=BC=CD,且∠ABC=140°,則∠AED=( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在⊙O中,弦AB與CD相交于點P,連接AC、DB.
(1)求證:△PAC∽△PDB;
(2)當
AC
DB
為何值時,
S△PAC
S△PDB
=4?

查看答案和解析>>

同步練習冊答案