分析 由拋物線解析式求出點(diǎn)A、B、C的坐標(biāo),得出OA=1,OB=OC=3,設(shè)∠PCB=∠OCA=α,得出tanα=$\frac{OA}{OC}$=$\frac{1}{3}$,由兩角和的正切公式得出tan∠OCP=tan(45°+α)=2,作PD⊥y軸于D,設(shè)PD=x,則CD=$\frac{1}{2}$x,得出點(diǎn)P坐標(biāo)為(x,3-$\frac{x}{2}$),再代入拋物線得出方程,解方程即可.
解答 解:∵二次函數(shù)y=x2-4x+3與坐標(biāo)軸交于A,B,C三點(diǎn),
當(dāng)y=0時(shí),x2-4x+3=0,
解得:x=1,或x=3,
∴A(1,0),B(3,0);
當(dāng)x=0時(shí),y=3,
∴C(0,3);
∴OA=1,OB=OC=3,
∴∠OCB=45°,
設(shè)∠PCB=∠OCA=α,
則tanα=$\frac{OA}{OC}$=$\frac{1}{3}$,
∴tan∠OCP=tan(45°+α)=$\frac{1+\frac{1}{3}}{1-1×\frac{1}{3}}$=2,
作PD⊥y軸于D,如圖所示:
設(shè)PD=x,則CD=$\frac{1}{2}$x,
∴點(diǎn)P坐標(biāo)為(x,3-$\frac{x}{2}$)代入拋物線得:x2-4x+3=3-$\frac{x}{2}$,
解得:x=$\frac{7}{2}$,或x=0(不合題意,舍去),
∴3-$\frac{x}{2}$=$\frac{5}{4}$,
∴P點(diǎn)坐標(biāo)為($\frac{7}{2}$,$\frac{5}{4}$).
點(diǎn)評(píng) 本題考查了拋物線與x軸的交點(diǎn)、等腰直角三角形的判定與性質(zhì)、兩角和的正切公式等知識(shí);本題有一定難度,由兩角和的正切公式得出tan∠OCP=tan(45°+α)=2是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a=3,b=4,c=3 | B. | a=$\sqrt{2}$,b=$\sqrt{3}$,c=$\sqrt{5}$ | C. | a=3,b=4,c=$\sqrt{7}$ | D. | a=1,b=$\sqrt{2}$,c=3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | 9 | C. | 8 | D. | 7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8種 | B. | 10種 | C. | 12種 | D. | 14種 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y | B. | $\frac{x+y}{y}$ | C. | $\frac{x-y}{y}$ | D. | $\frac{1}{y}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com