【題目】碼頭工人每天往一艘輪船上裝載貨物,平均每天裝載速度y(噸/元)與裝完貨物所需時間x(天)之間是反比例函數(shù)關(guān)系,其圖象如圖所示.
(1)求這個反比例函數(shù)的表達式;
(2)由于緊急情況,要求船上的貨物不超過5天卸貨完畢,那么平均每天至少要卸貨多少噸?
(3)若碼頭原有工人10名,且每名工人每天的裝卸量相同,裝載完畢恰好用了8天時間,在(2)的條件下,至少需要增加多少名工人才能完成任務(wù)?
【答案】(1);(2) 80噸貨物;(3)6名.
【解析】
(1)根據(jù)題意即可知裝載速度y(噸/天)與裝完貨物所需時間x(天)之間是反比例函數(shù)關(guān)系,則可求得答案;
(2)由x=5,代入函數(shù)解析式即可求得y的值,即求得平均每天至少要卸的貨物;
(3)由10名工人,每天一共可卸貨50噸,即可得出平均每人卸貨的噸數(shù),即可求得答案.
解:(1)設(shè)y與x之間的函數(shù)表達式為y=,
根據(jù)題意得:50=,
解得k=400,
∴y與x之間的函數(shù)表達式為y=;
(2)∵x=5,∴y=400÷5=80,
解得:y=80;
答:平均每天至少要卸80噸貨物;
(3)∵每人一天可卸貨:50÷10=5(噸),
∴80÷5=16(人),16﹣10=6(人).
答:碼頭至少需要再增加6名工人才能按時完成任務(wù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課間,小聰拿著老師的等腰直角三角板玩,不小心掉到兩墻之間(如圖),,,從三角板的刻度可知,小聰很快就知道了砌墻磚塊的厚度的平方(每塊磚的厚度相等)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的三角形數(shù)組是我國古代數(shù)學(xué)家楊輝發(fā)現(xiàn)的,稱為楊輝三角形.計算(a+b)n的結(jié)果中的各項系數(shù)依次對應(yīng)楊輝三角的第(n+1)行中的每一項,如,(a+b)3=a3+3a2b+3ab2+b3,若t是(a﹣b)2019展開式中ab2018的系數(shù),則t的值為( 。
A.2018B.﹣2018C.2019D.﹣2019
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面的圖象反映的過程是:張強從家跑步去體育場,在那里鍛煉了一陣后又原路返回,順路到文具店去買筆,然后散步回家.其中x表示時間,y表示張強離家的距離.根據(jù)圖象回答:
(1)體育場離張強家______ 千米,張強從家到體育場用了______ 分鐘;
(2)體育場離文具店______ 千米;
(3)張強在文具店逗留了______ 分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是輪滑場地的截面示意圖,平臺AB距x軸(水平)18米,與y軸交于點B,與滑道y=(x≥1)交于點A,且AB=1米.運動員(看成點)在BA方向獲得速度v米/秒后,從A處向右下飛向滑道,點M是下落路線的某位置.忽略空氣阻力,實驗表明:M,A的豎直距離h(米)與飛出時間t(秒)的平方成正比,且t=1時h=5,M,A的水平距離是vt米.
(1)求k,并用t表示h;
(2)設(shè)v=5.用t表示點M的橫坐標x和縱坐標y,并求y與x的關(guān)系式(不寫x的取值范圍),及y=13時運動員與正下方滑道的豎直距離;
(3)若運動員甲、乙同時從A處飛出,速度分別是5米/秒、v乙米/秒.當甲距x軸1.8米,且乙位于甲右側(cè)超過4.5米的位置時,直接寫出t的值及v乙的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將△AOB繞點B逆時針旋轉(zhuǎn)90°后得到△A′O′B.若反比例函數(shù)的圖象恰好經(jīng)過斜邊A′B的中點C,S△ABO=4,tan∠BAO=2,則k的值為( )
A.3 B.4 C.6 D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B,C重合),∠ADE=∠B=α,DE交AC于點E,且cosα=.下列結(jié)論:①△ADE∽△ACD;②當BD=6時,△ABD與△DCE全等;③△DCE為直角三角形時,BD為8或;④0<CE≤6.4.其中正確的結(jié)論是______________.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,邊長為1的正方形網(wǎng)格中,的三個頂點、、都在格點上.
(1)作關(guān)于關(guān)于軸的對稱圖形,(其中、、的對稱點分別是、、),并寫出點坐標;
(2)為軸上一點,請在圖中畫出使的周長最小時的點(不寫畫法,保留畫圖痕跡),并直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點P從點A開始沿折線AC-CB-BA運動,點P在AC,CB,BA邊上運動的速度分別為每秒3,4,5個單位.直線l從與AC重合的位置開始,以每秒個單位的速度沿CB方向移動,移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設(shè)運動的時間為t秒,當點P第一次回到點A時,點P和直線l同時停止運動.
(1)當t=5秒時,點P走過的路徑長為_________;當t=_________秒時,點P與點E重合;
(2)當點P在AC邊上運動時,連結(jié)PE,并過點E作AB的垂線,垂足為H. 若以C、P、E為頂點的三角形與△EFH相似,試求線段EH的值;
(3)當點P在折線AC-CB-BA上運動時,作點P關(guān)于直線EF的對稱點Q.在運動過程中,若形成的四邊形PEQF為菱形,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com